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Abstract—Designable proportion regulation systems
which consist of identical agents using stochastic automata
are suggested. From the viewpoint of the group response
and the individual behavior, the performances of a simple
model and an improved one are compared numerically.

1. Introduction

Social insects such as bees or ants exhibit polyethism,
i.e., a system for division of labor[1]. In a colony, several
kinds of tasks — nursey, nest maintaining, foraging and so
on — are allocated for numerous individuals of that colony
mainly by their age. This intriguing phenomenon has at-
tracted many scientists of various fields, such as biology,
chemistry and physics. Problem concerning to the mech-
anism for the system is not fully understood up to now.
Recent studies reveal that the diversity of internal states (or
agents) improves the efficiency of the colony as a whole
[2]. As another example, the differentiation phenomena of
the cellular slime molds can be regarded as a kind of task
allocation of genetically identical cells with an appropri-
ate proportion between different cell types [3]. In a soci-
ety of human beings, self organization of the division of
labor without external orders is sometimes experienced in
our daily life.

The task allocation with the proportion regulation has
many merits; The system adapts itself to the variations of
the environment autonomously, it does not require sophis-
ticated information processing abilities to each individual,
high efficiencies are expected by learning of each individ-
ual, the whole system is robust against the disturbance such
as loss of a part of individuals. For these reasons, it is worth
studying this system from the viewpoint of science and en-
gineering.

In this paper, we suggest designable proportion regula-
tion systems using stochastic automata and compare them.
We consider that proportion regulation system has follow-
ing properties: (i) it consists of a mass of (almost) identical
individuals, (ii) they divide into several states, (iii) and the
proportions of population between the states are regulated
in a certain range against various disturbances. (iv) Super-
vising individuals are not necessary.

2. Stochastic Automata Model

Recently, several models of proportion regulation system
have been investigated; threshold model for task allocation
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Figure 1: Several architecture of the states and the rule,
sequential (a), general (b) and all-to-all (c) types. Gray cir-
cles and black arrows represent the states and the transition
rule between them, respectively.

[4], global Türing model [5] and variable potential mod-
els [6]. We here focus on a stochastic automata model to
design the proportion regulation systems for the various ar-
chitecture of the states (see Fig. 1).

Let the total number of individuals of the system be N
and the number of states be M. Each individual has a set
of transition probability between the states {pi j} and it gen-
erates a random number s iteratively. The state at the next
time step is determined by the value s and the transition
rule using {pi j}. For the simplicity, the random number s
is uniform in the interval [0, 1] without any temporal cor-
relation. The transition probability between the states pi j

satisfies the condition 0 ≤ pi j ≤ 1, i, j = 1, ...,M, and the
normalization condition

∑
j pi j = 1. As a transition rule,

we adopt following rule for the individuals in the i-th state
(see also Fig. 2):

k−1∑
j=1

pi j ≤ s <
k∑

j=1

pi j ⇒ transition to k-th state. (1)

Taking the continuum limit concerning to time, an evo-
lution equation for the number of individual ni(t) in the i-th
state at time t is represented as

�̇n = F�n, (2)
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Figure 2: Schematic view of the transition rule for individ-
uals in i-th state. At the next time step, an individual with
value s jumps to state 2 in this case.

where �n ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1

:
nM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ is a state vector and

(F)i j ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p ji i � j,

−
∑
k�i

pik i = j,
(3)

is an evolution matrix. This system is M − 1 dimensional
linear dynamical system considering the constraint

∑
ni =

N. If we represent a proportion regulated steady state �n∗, it
corresponds to a null eigenvector of F, i.e.,

�0 = F�n∗. (4)

Next, let a set of proportion between the designed states
be

{r∗i } ≡ (r∗1, ..., r
∗
M) ≡

(
n∗i
N
, ...,

n∗M
N

)
. (5)

The number of the condition to design {r∗i } equals to M − 1
while the number of {pi j} is M(M − 1). Therefore, there
remains (M − 1)2 “degrees of freedom” of {pi j} even {r∗i }
is specified. Using these remained degrees of freedom, we
can design other aspects such as time scale or flow between
the states with keeping the designed proportion.

For example, if M = 3 as depicted in Fig. 3, the transi-
tion matrix is
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p12 − p13 p12 p13

p21 1 − p21 − p23 p23

p31 p32 1 − p31 − p32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

and the evolution matrix becomes

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−p12 − p13 p21 p31

p12 −p21 − p23 p32

p13 p23 −p31 − p32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (7)

Concerning to the steady state vector

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
n∗1
n∗2
n∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , the propor-

tion between the states is determined only by the ratio of
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Figure 3: Example case of M = 3.

transition probabilities: r∗1 : r∗2 : r∗3 = p32 p21 + p23 p31 +

p21 p31 : p13 p32+p31 p12+p12 p32 : p12 p23+p21 p13+p13 p23.
In this case, the total number of parameters pi j equals six
and the number of condition to determine the designed pro-
portion is two. So there are four degrees of freedom to de-
sign other aspects of the system. One simple example is
that if we multiply each of pi j equally (keeping the condi-
tion 0 ≤ pi j ≤ 1), the designed proportion is unchanged and
only the time scale varies. This is because the proportion r∗j
is given in the form of the homogeneous expression of pi j.
As other examples, several restricted rules are designable
such as directed loops by choosing p12 = p23 = p31 = 0
(only “clockwise” transitions are allowed in Fig. 3). Note
that symmetric transition probabilities (pi j = p ji) causes an
equal proportion (r∗i = 1/M).

3. Variable Probability Model

Individuals of the simple model described in the previous
section is independent each other and there is no “synergic”
mechanism. In this section, we try to control the perfor-
mance of the system by introducing an interaction between
the individuals.

First of all, in order to represent the deviation from a de-
signed state, we introduce stock materials for each states.
These materials represent a scale of sufficiency of each
state. If we consider the social insects world, they may
correspond to pheromones or room which is not occupied
by the dust in the nest. Hereinafter, let a quantity of stock
material of j-th states be wj. Next, we represent a quantity
of stock material of designed proportion w∗j . We define ba-
sic transition probability {p0

i j} as the same value introduced
in the previous section, i.e., {pi j} which gives �n∗. Using
these quantities, we suggest a dynamical modification of
the transition probability as follows:

p̃i j = f (wi − w∗i ) × p0
i j × g(wj − w∗j), (8)

with normalization condition pi j = p̃i j/
∑

j p̃i j. The func-
tions f (w) and g(w) are modifier functions which repre-
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sent the situations of the pre- and post-transition states
and they satisfy following conditions: f (w), g(w) > 0,
f (0) = g(0) = 1. As for a dynamics of the stock mate-
rials wj,

γ jẇ j = −wj + α jn j − β jN, (9)

is considered. Here, the parameters α j, β j and γ j are the
production rate, the consumption rate and the decay rate
of the stock materials, respectively. For the steady states
ẇ j = 0, wj = α jN(r j − β j/α j). The quantity of the stock
material for the designed proportion r∗j is then given as
w∗j = α jN(r∗j − β j/α j). By assuming β j/α j = r∗j , we set
w∗j = 0.

4. Numerical Results

Here, we perform numerical simulations and compare
the behavior of the two models. The number of states
M = 3 and the transition probability {p0

i j} is set to p0
12 =

p0
23 = p0

31 = 0, p0
13 = 0.6p̄, p0

21 = 0.3 p̄ and p0
32 = 0.2 p̄

in order to design the proportion r1 : r2 : r3 = 1 : 2 : 3
with the “clockwise” rule. p̄ is a constant parameter which
only changes the time scale. As the modifier functions, we
adopt f (w) = 1 and g(w) = exp(−kw). If k = 0, it repre-
sents the simple (constant) probability model. To observe
the response to the unsteady environment, the simulation
is performed under several kinds of perturbation. Figure
4 shows typical time series in the two different environ-
ment, i.e., unperturbed (−5000 < t < 0) and perturbed
(0 < t < 5000). In the perturbed case, all the individuals
in the state 2 is forcedly moved to the state 3 at randomly
chosen timing (as indicated by the downward arrows in Fig.
4).

With the simple probability model (k=0), the designed
proportion are achieved statistically and the proportion be-
tween the states fluctuates to some extent in the unper-
turbed environment. In the perturbed case, the proportions
deviates from the designed value 1/6 : 1/3 : 1/2. On the
other hand, with the variable probability model (k=0.1), the
designed proportion is realized almost constantly in both
environments. Especially, quick recoveries are observed in
the perturbed case.

In order to characterize these features quantitatively, we
introduce an order parameter which describes the group be-
havior. We here adopt the accuracy of the proportion Ap

which is defined by the hamming distance between the ob-
tained proportion r j(t) and the designed one r∗j :

Ap(t) =
1
N

M∑
j=1

(r j(t) − r∗j )
2. (10)

Using Ap, two systems can be compared from the view-
point of the accuracy to the designed proportion, i.e., the
smaller Ap, the more accurate the proportion is. Figure 5
shows the 〈Ap〉 vs the basic transition probability p̄ of the
two models in the perturbed environment, where 〈Ap〉 de-
notes the time average of Ap. For the simple model (black
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Figure 4: Typical time series of the proportion of each
states with M = 3 and N = 100. Proportion is designed
to 1 : 2 : 3. (a) simple probability model (k = 0) and
(b) variable probability model (k = 0.1). Black, dark gray,
light gray lines show the proportion of the state 1,2 and 3,
respectively. The system is unperturbed during t < 0 and
in t > 0 the perturbations are added at the time denoted by
the arrows.

line), 〈Ap〉 is a decreasing function of p̄, which can be inter-
preted as the large transition probability enables the system
to respond to the perturbation quickly. The variable model
(gray line) realizes lower value of accuracy than the simple
model, less than one of tenth in the low p̄ regime. So, if
we want to set the system more accurate in the unsteady
environment, an increase of the transition probability by p̄
or modifier g(w) is effective.

Next, we focus on the behavior of individuals. As char-
acteristic quantity, we introduce an average of individual
resident time of the each state. Let τki is the k-th resident
time of the i-th element as shown in Fig.6(a). The individ-
ual resident time is defined as

τI ≡ 〈τki 〉, (11)

where 〈〉 denotes the average both on i and k. The smaller
τI , the faster each individual transits between the states.

The reason why we see τI is that a kind of inefficiency
is anticipated for too small τI by considering factors such
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Figure 5: Averaged accuracy of the proportion 〈Ap〉 vs p̄.
Black and gray lines denote the simple model (k = 0) and
the variable model (k = 0.1), respectively.

that the time loss required by changing state or learning. 1

Figure 6(b) shows the τI vs p̄ for the simple model (black)
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Figure 6: Typical evolution of i-th individual (a) and the
average resident time τI vs p̄ (b). Black and gray lines
denote the simple model (k = 0) and the variable model
(k = 0.1), respectively.

and the variable one (gray) in the perturbed environment.
In both models, τI is a decreasing function of p̄. The differ-
ence between the two models is not so large and the influ-
ence of the modifier function to the resident time is consid-
ered to be slight. The relative decrease of τI of the variable
model in the region p̄ < 0.01 is the result of adaptation to
the perturbed environments.

1If there is an effect of weariness — inefficiency caused by continua-
tion of the same state, τI may be chosen within some extent.

Considering these two aspects represented by Ap and τI ,
we can choose the setting of the system depending on the
situation. For example, if we want to increase both the ac-
curacy and the individual resident time, the variable model
with small p̄ is suitable.

5. Discussion

Proportion regulation systems using stochastic automata
are suggested. First, the simple probability model is in-
troduced and it is shown that fully asymmetric system
(pi j � p ji) has excess degrees of freedom to design the pro-
portion of steady state �n∗. Second, the variable probability
model is suggested to control the two quantitative aspects
i.e., the accuracy Ap and the resident time of individual τI .
Using these quantities, the performances of different sys-
tems can be compared. A reality of the stochastic transition
rule in the biological correspondence, e.g., chemical reac-
tion network, gene-metabolic network or neural network
remains as an open problem.
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