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Abstract—We study complete synchronization of
chaotic oscillators in weighted complex networks and we
show that the ability of the networks to achieve synchro-
nization (synchronizability) is universally determined by
two leading parameters in random networks and is inde-
pendent of the degree distribution. The leading parameters
are the mean degree and the heterogeneity of the distribu-
tion of node’s intensity, where the intensity of a node, de-
fined as the total strength of input connections, is a natural
combination of topology and weights.

1. Introduction

Networks are playing an increasing role in the study of
complex systems [1]. A problem of fundamental impor-
tance is the impact of network structures on the dynamics
of the networks [2, 3, 4]. This problem has been recently
also intensively studied in the context of synchronization
of networks [5, 6, 7, 8, 9, 10]. Previous work on syn-
chronization has focused mainly on the influence of the
topology of the connections by assuming that the coupling
strength is uniform. It has been shown that the ability of
an oscillator network to synchronize depends critically on
the average distance between nodes and the heterogeneity
in the distribution of degrees (the number of connection of
node) [9]. However, most complex networks where syn-
chronization is relevant are actually weighted, for example
the brain networks [11], networks of cities in the synchro-
nization of epidemic outbreaks [12], and communication
and other technological networks whose functioning relies
on the synchronization of interacting units [13]. It has been
shown that the weights of many real networks are often
highly heterogeneous [14]. We have recently studied the
effects of weighted coupling on synchronization [10] and
found that the synchronizability is strongly influenced by
the weight structure of the networks. A question still open
is: Is there a general principle underlying the synchroniza-
tion of networks with different topology and weight struc-
ture? And what are the leading parameters controlling the
synchronizability of complex networks?

In this paper, we address this question in random net-
works with weighted coupling schemes motivated by real
networks. We have found a universal formula that de-
scribes synchronizability of identical oscillators solely in
terms of the mean degree and the heterogeneity of the
node’s intensity, irrespective of the degree distribution,
clustering, degree correlation, and other topological prop-

erties. The intensity of a node, defined as the sum of the
strengths of all input connections of that node, incorpo-
rates both topological and weighted properties and raises
as a very important parameter controlling the synchroniz-
ability of complex networks.

The paper is organized as follows. In Sec. 2 we present
the dynamical equation of the system and the measure
of synchronizability. In Sec. 3 we discuss effects of a
weighted coupling scheme motived from real networks,
showing that the synchronizability is correlated with the
heterogeneity of the intensity. With a general weighted
coupling scheme, we demonstrate the universality of the
synchronizability in Sec. 4. The universal formula is ob-
tained in Sec. 5. Sec. 6 is devoted to the conclusion.

2. Dynamical Equation and Synchronizability

The dynamics of a general weighted network of
�

cou-
pled identical oscillators is described by

�� � � � 	 � �  � � ��
� � � � � � � � � � � 	 � �   � 	 � �  ! " (1)

� � 	 � �   � ��
� � � % � � � 	 � �  " ) � + " . . . " � " (2)

where � � � 	 �  governs the dynamics of each individ-
ual oscillator, � � � 	 �  is the output function, and �
is the overall coupling strength. Here % � 	 % � �  is the
coupling matrix combining both topology [adjacency ma-
trix � � 	 � � �  ] and weights [weight matrix � � 	 � � �  ]:

% � � �  � � � for ) 6� 8 and % � � � ; � � � � � � � � = � .
Here = � denotes the intensity of node ) , which is a signif-
icant measure integrating the information of connectivity
and weights.

The linear stability of the synchronized state ? � � �@ " C ) F �@ � � 	 @  K can be assessed by diagonalizing the
variational equations of Eq. (2) into

�
eigenmodes of the

form �L � � � M � 	 @   � N � M � 	 @  ! L � " (3)

where N � denotes the ) th eigenvalue of the coupling matrix

% [15]. We assume that � is binary and symmetric, as in
many previous studies [7, 6, 9], and we focus on the cases
where % has real eigenvalues, Q � N � T N V X X X T N � ,
with N � � Q corresponding to the eigenmode parallel to the
synchronization manifold. For many oscillatory dynamical
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systems [7, 15], each transverse eigenmode is stable in a
single, finite interval � � � � � � � � � , where the thresholds

� � and � � are determined only by 	 , 
 , and � . The network
is thus synchronizable for some � if the condition � � �� � � � � � is satisfied for all � � � , so that all the transverse
eigenmodes are damped. This is equivalent to the condition

� � � � � � � � � � � � � � (4)

where the eigenratio
�

depends only on the network struc-
ture, as defined by the coupling matrix � , and � � � � � de-
pends only on the dynamics. From these, it follows that
the smaller the eigenratio

�
the more synchronizable the

network and vice versa [7]. We then characterize the syn-
chronizability of networks using the eigenratio

�
only.

3. Weighted Coupling on Synchronizability

The analysis of real networks, including scientific col-
laboration networks [14], metabolic networks [16], and
airport networks [14, 16], has shown the following: (i)
the weight �

� � of a connection between nodes � and �
is strongly correlated with the product of the correspond-
ing degrees (number of connections) as � �

� �  " # % � % � & ( ;
(ii) the average intensity ) # % & of nodes with degree % in-
creases as ) # % & " % - . A similar functional relationship
between weights and network topology has been found in
traffic-driven models where the weights are defined by the
betweenness centrality [16] or link-load [17]. When the
degree correlations can be neglected, the exponents in (i)
and (ii) are related as . / 1 3 5 [14]. In particular,5 7 8 9 ; ( . 7 1 9 ; & for the world-wide airport network,
so that the intensities of the nodes grow faster than their
degrees, while 5 7 8 # . 7 1 & for the cond-mat collabo-
ration network [14]. The case 5 � 8 ( . � 1 ) corresponds
to a saturation in the capacity of nodes with large degrees
and is expected to be relevant for other networks, such as
neuronal and cortical networks.

Motivated by these observations from real networks, we
consider the following weighted couplings,

�
� � / # % � % � & ( � (5)

where 5 is a tunable parameter. This model includes un-
weighted networks as special cases ( 5 / 8 and �

� � / 1 ),
which have been widely studied [7, 6, 9].

We now study the synchronizability of weighted net-
works in a model of growing scale-free networks (SFNs)
with aging [18], which extends the Barabási-Albert (BA)
model [19]. To build the networks, we start with E fully
connected nodes and we add a new node with E links at
each time step. The minimum degree is then % G I J / E
and the mean degree is L / � E . The preferential attach-
ment of new links is assumed to depend on the degree % �
and age M � of the corresponding node according to the prob-
ability N � " % � M P Q� . The analysis in [18] shows that for
the aging exponent R T � V W 8 , this growing rule gener-
ates SFNs with a power-law tail X # % & " % P [ and scaling
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Figure 1: Eigenratio
�

as a function of 5 in weighted grow-
ing SFNs with aging exponent V / 8 ( ] ) and V / R ` ( a ).
Each symbol is an average over 50 realizations of the net-
works, for L / � 8 and

c / � � f
. The solid lines are the

approximations of
�

by Eq. (10) with g h / 8 9 i k .

exponent in the interval � � m W ` , as in most real SFNs.
For V / 8 , we retain the usual BA model [19], which hasm / ` .

The weighted coupling scheme of Eq. (5) has a signifi-
cant impact on the synchronizability of the networks. As5 is reduced from zero, the eigenratio

�
decreases and

reaches a minimum around 5 / R 1 for different networks
[Fig. 1]. The eigenratio

�
is also shown as a function of

the aging exponent V [Fig. 2(a)]. For unweighted networks
( 5 / 8 ), the synchronizability decreases when V is re-
duced. When the networks are weighted with 5 / R 1 , the
synchronizability is clearly enhanced. But which changes
in the network underlie this enhanced synchronizability?

The degree distribution does not change with 5 , and
the individual weights �

� � become more heterogeneous
when 5 is reduced from 5 / 8 . The intensities ) � of
the nodes, however, become more homogeneous when 5

r R 1 . This can be seen by ) � / % � t (� � % (�  � , where
� % (�  � / # 1 � % � & w % (� is almost constant if the degree corre-
lation can be neglected and % � y 1 , so that the intensity is
almost homogeneous at 5 / R 1 . These observations sug-
gest that the synchronizability of the networks is positively
correlated with the homogeneity of ) � .

4. Universality

To investigate how the synchronizability depends on the
intensity, we consider a more general weighted coupling
model in which the node’s intensities ) � follow an arbitrary
distribution not necessarily correlated with the degrees % � .
In this model, the coupling weights are defined as

�
� � / ) � � % � � (6)

for all the % � (input) connections of each node � . Note
that the eigenvalues of the resulting coupling matrix � are
still real. Now we analyze two different distributions of) � which are uncorrelated with the distribution of % � : (1) a
uniform distribution in } ) G I J � ) G � � � ; and (2) a power-law
distribution, X # ) & " ) P � , ) � ) G I J , where ) G I J is a

711



−3.0� −2.0� −1.0 0.0
α�

100

101

102

R

−3.0� −2.0� −1.0 0.0
α�

−0.5

0.0

0.5

c�

r
(a) (b)

Figure 2: (a) Eigenratio
�

vs. � for growing SFNs with� � 	 ( 
 ) and � � � � . Solid lines: approximation by
Eq. (10) with � � � 	 � � � . (b) Clustering coefficient � ( � ),
defined as in Ref. [1], and degree correlation coefficient �
( � ), defined as in Ref. [21], vs. � . The other parameters
are the same as in Fig. 1.

positive number. In both cases, the parameter � � �  ! � � " #
is taken as a measure of the heterogeneity of the distribu-
tion. We find that for a given mean degree $ , the eigen-
ratio

�
collapses into a single curve if plotted as a func-

tion of � � �  ! � � " # [Fig. 3(a)], irrespective of the distribu-
tions of & ' and � ' . These results provide strong evidence
that the synchronizability is universally determined by the
mean degree $ and the heterogeneity of the intensities � ' .
For a given $ , the synchronizability is enhanced when � '
becomes more homogeneous.

5. Universal Formula and Leading Parameters

A more physical and quantitative understanding of this
universality can be obtained by a mean field approxima-
tion of the dynamical system in Eq. (1). Let () +' �

, � ! � ' - . /0 2 4 5
' 0 � ' 0 ) , 7 0 - � , & ' ! � ' - ; 5

' 0 ) , 7 0 - = ' be
the weighted local mean field of all the neighbors con-
nected to the oscillator > . Eq. (1) can be rewritten as?7 ' � C , 7 ' - F H � ' I () +' � ) , 7 ' - K � Since the state 7 0 of
an oscillator L is not affected directly by the individual
output weights 5

' 0 , we may assume that 5
' 0 and ) , 7 0 -

are statistically uncorrelated and consequently () +' M
, & ' ! � ' - ; 5

' 0 = ' ; ) , 7 0 - = ' � () ' for large & ' . Here () ' �
, � ! & ' - . /0 2 4 � ' 0 ) , 7 0 - is the unweighted local mean field.
If the network is sufficiently random with large enough
minimum degree & � " # , the local mean field () ' can be
approximated by the global mean field of the network,

() ' M () . Moreover, for small perturbations close to the
synchronized state U , we may assume () ' M ) , U - , and the
system is approximated as

?7 ' � C , 7 ' - F H � ' I ) , U - � ) , 7 ' - K Z (7)

indicating that the oscillators are decoupled and forced by
a common oscillator

?U � C , U - , with the forcing strength
being proportional to the intensity � ' . If there exists someH satisfying \ 4 ^ H � ' ^ \ _ for all > , then all the oscilla-
tors are synchronizable by the common driving ) , U - , cor-

responding to complete synchronization of the whole net-
work. This observation suggests that the eigenratio

�
can

be approximated as

� M � � �  
� � " # � (8)

The deviation of the the local mean field () ' from the
global one () due to finite degree has further affects on
the synchronizability. The mean amplitude of the devia-
tion over the whole network is expected to be related to
the mean degree $ . This effect is similar for different
distributions of the intensities. A more detailed depen-
dence on $ can be obtained for the special case where
the intensities are fully uniform ( � ' � � c > ). In this
case, the coupling matrix e in Eq. (2) can be written as

e
� f g 4 , h � � - , where f � diag j & 4 Z & _ Z � � � Z & / n are

the diagonal matrix of the degrees. e has the same spec-
trum of eigenvalues of the (symmetric) normalized Lapla-
cian matrix o � f g 4 p _ , h � � - f g 4 p _

. Recently, it has
been shown [20] that the spectrum of o tends to the semi-
circle law for large random networks with arbitrary ex-
pected degrees, provided that the minimum expected de-
gree & � " # r s $ , and that t u w j � � x _ Z x / � � n �

I � F | , � - K _� � for & � " # r s $ � � � �
. From these, it fol-

lows that � M � � , $ - � � F � ! s $� � � ! s $
Z (9)

Our simulations on various networks indicate that Eq. (9)
already provides a good approximation under the weaker
condition & � " # r � , regardless of the degree distribution.

Based on these physical arguments, we may assume that
the contribution due to the number of connections is statis-
tically independent of the contribution due to the strength
of the connections, so that we can combine Eq. (8) and (9)
to obtain � � � � � � �  

� � " # � � , $ - Z (10)

where � � is a constant of order � . This formula is ex-
pected to be universal for sufficiently random networks
with & � " # r � and with arbitrary distributions of inten-
sities � ' and degrees & ' (but real spectra of e ).

As shown in Figs. 1-3, with a single value of parame-
ter � � � 	 � � � , Eq. (10) approximates the eigenratio

�
very closely for different networks and weighted coupling
schemes (including unweighted networks). This fitting pa-
rameter underestimates

�
slightly only when the intensi-

ties become rather homogeneous ( � � �  ! � � " # ^ � ). For
large $ and homogeneous distribution of intensities, we
have � � � � . When the intensities are not uniform, � � is
smaller but still of order � . Moreover, � � is almost con-
stant at large values of � � �  ! � � " # and � ! � � " # for a given

$ (Fig. 3(b)).
In addition to heterogeneous degrees and weights, many

real networks also display high clustering [1] and nontrivial
correlation of degrees [21], which are known to have signif-
icant influence on percolation transitions [21] and epidemic
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Figure 3: (a)
�

as a function of � � 	 � � � �  � . Filled sym-
bols: uniform distribution of � � � � � �  � � � � 	 � � . Open
symbols: power-law distribution of � � , � � � � � � � ! for" $ % & ( & * + . Different symbols are for networks with
different topologies: growing SFNs with , - + (circles)
and , - / 1 (diamonds), and 2 -regular random networks
(triangles), for 2 - " + and

4 - " 5 7
. ( 2 -regular net-

works are networks where all the nodes have the same de-
gree 2 .) The solid line is the approximations by Eqs. (10)
with 8 9 - + $ : ; . (b) 8 9 as a function of � � 	 � � � �  � . The
symbols are for 2 -regular networks: 2 - % ( = ), 2 - " +
( > ), 2 - 1 + ( @ ), and 2 - : + ( A ). The results are aver-
aged over 100 realizations of networks.

spreadings [22] in complex networks. We find that growing
SFNs also exhibits nontrivial clustering and degree corre-
lation for , C + , as shown in Fig. 2(b). In spite of that, the
synchronizability is still well accounted by Eqs. (10). This
universal formula is thus expected to describe the synchro-
nizability of many realistic networks.

6. Conclusion

In summary, we have shown that the synchronizabil-
ity of sufficiently random networks with minimum degreeD �  � F * is universally determined by the mean degree 2
and the heterogeneity of the intensities � � . This universal-
ity applies to a general class of large networks where the
heterogeneity of � � is due to either the distribution of de-
grees, as in unweighted SFNs, or the distribution of con-
nection weights, as in weighted 2 -regular networks, or
a combination of both, as expected in most realistic net-
works. Our universal formula [Eq. (10)] not only describes
synchronizability on such weighted complex networks in
terms of only two parameters, regardless of the network
size, clustering, degree correlation, and details of the de-
gree distribution, but also explains why synchronizability
is improved when the heterogeneity of � � is reduced. This
can be useful for network design and control of synchro-
nization.
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