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Abstract—

We study phase synchronization effects in a chain of
non-identical chaotic oscillators with a type-I intermittent
behavior. Two types of parameter distribution: linear and
random, are considered. The typical occurring futures are
the onset and existence of global (all-to-all) and cluster
(partial) synchronization with increase of coupling. In-
crease of coupling strength can also lead to desynchroniza-
tion phenomena, i.e. global or cluster synchronization is
changed into a regime where synchronization is intermit-
tent with incoherent states. Then the regime of fully in-
coherent non-synchronous state - spatio-temporal intermit-
tency appears.

1. Introduction

The study of cooperative behavior in ensembles of
chaotic oscillators is a topical problem of nonlinear dy-
namics. Chaotic synchronization in such spatially extended
systems has been considered for populations of locally and
globally coupled maps [1, 2, 3, 4, 5, 6, 7] as well as for
ensembles of locally and globally coupled continuous-time
chaotic oscillators [8, 9, 10, 11]. The theoretical knowledge
obtained has been often applied to describe dynamical pro-
cesses in various biological and physical systems.

Among basic types of synchronization (complete and
generalized) chaotic phase synchronization (CPS) is a sub-
ject of active investigations (see [12]). CPS in ensembles
of locally coupled chaotic elements was firstly studied in
chains of weakly diffusively coupled chaotic Rossler oscil-
lators [10]. Time-discrete systems were also under study.
Synchronization phenomena in ensembles of locally cou-
pled circle maps were considered in [7]. Many phenomena
observed in populations of periodic oscillators were found
there too, especially to mention the formation of several
clusters of mutually synchronized elements and global syn-
chronization. The study of CPS requires the existence of
equations for the evolution of phase variables (as it is for
coupled Rosller oscillators or circle maps) or at least the ex-
istence of appropriate definition of phases [13]. However,
there are so far no unambiguous methods to obtain such
equations and definitions. But in some cases specific prop-
erties of the chaotic attractors allows to define the phases of
chaotic oscillations in a rather simple way. Besides oscil-

lators, where chaos appears through a period doubling cas-
cade, it is possible to introduce a suitable phase for typical
systems with intermittent-like behavior, especially for sys-
tems with type-I intermittent chaotic oscillations, or spik-
ing neurons [14]. In this paper we investigate the collec-
tive dynamics in chains of such maps. Our study is mo-
tivated by high importance of understanding mechanisms
behind the transition from low-dimensional chaos (which
may correspond to synchronized chaotic systems) to de-
veloped (spatio-temporal) turbulence that often looks like
intermittent chaotic behavior. The paper is organized as
follows. In Sec.Il we shortly describe the behavior of the
quadratic map generating chaotic type-I intermittent behav-
ior, introduce definitions of the phase and the frequency of
oscillations, and give criteria for synchronization in chains
of coupled maps. Synchronization phenomena as well as
synchronization-desynchronization transitions with linear
and random distribution of control parameter are discussed
in Secs. IIT and IV. The results are summarized in Sec.V.

2. Model of coupled intermittent maps. Phase and fre-
quency. Synchronization criteria

In the focus of this study is the synchronization problem
in chains of coupled non-identical maps with the intrinsic
type-I intermittent chaotic behavior. In order to measure
the degree of synchronized motion, we will first introduce
frequency and phase of intermittent oscillations. Chaotic
intermittent motion has a distinct characteristic time scale
(CTS). For type-I intermittency a very large laminar stage
(with duration 1) is followed by a very short turbulent stage
(with duration T) and then the next laminar stage begins.
Sometimes (for example, in the model map studied below)
the turbulent stage has only one jump from a practically
fixed variable value and back. This event is reminiscent
of firing - a special behavior, which is typical for neuronal
systems. Regarding this specific character of behavior we
will distinguish between the laminar and the firing stages.
The average length of the laminar stage (ALLS) for a single
element is defined as [15]
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where ¢ is a bifurcation parameter and & is the critical
value when chaos sets in [16]. For coupled maps studied
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below ALLS can be calculated numerically as:
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where k; is the moment when the /th laminar stage sets in or
in other words when the Ith firing occurs. One can also in-
troduce a phase of the intermittent oscillations, attributing
to each interval between the starts of the laminar stage (or
in other words between two firings) a 27 phase increase:
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where k is discrete time.

The presence of a CTS and a suitable phase allows to
formulate the problem of chaotic phase synchronization in
ensembles of coupled units with intermittent behavior. So,
if CTS < 7; > or the corresponding frequencies

Q;=2n/<71;> 4)

of all units become equal, this manifests their global 1:1
frequency entrainment. If the conditions

lof — ¢k, | < Const (5)

for all k are fulfilled, one can speak about a 1:1 phase lock-
ing between the /th and the mth units.

Let us demonstrate mutual phase synchronization of
chaotic intermittent oscillations for a chain of diffusively
locally coupled non-identical quadratic 1-D maps:

x/;-*—l — f‘j(xljc)+

d(x’}ifl - 2x’; + x’J‘.H), (6)

j=1,..N,

where, N is the number of elements in the chain, f;(x) con-
sists of the standard quadratic part that produces a laminar
motion and a somewhat arbitrary chosen return part that
acts as a firing stage:

sj+x+x2, if x <0.2,

fi(x) = O
gx-02)-g;-024, if x > 0.2

Here g regulates the coherence properties of the chaotic at-
tractor. In case g < 5 the laminar stage duration is dis-
tributed in a rather narrow band, i.e. the chaotic behavior
is highly coherent, but for g > 5 this distribution is rather
broad. We will focus on the case of a coherent chaotic at-
tractor and set g = 2. We remind that the uncoupled map
(d = 0in (6)) demonstrates a type-I intermittent behavior
fore; > 0,i.e. &7 =0.

The parameter ; defines CTS in the individual j-th os-
cillator. In our study we treat two cases: (i) a linear distri-
bution of the parameter €;: &; = &1 + Ae(j — 1), where Ag

is the parameter mismatch between neighboring elements,
and (ii) a random uniform distribution of natural frequen-
cies in the range [&1, &1 + Ae(N — 1)]. We assume free-end
boundary conditions:

X0 =0 ;5 K0 =xk @) ®)

for all k.

3. Linearly distributed control parameter. Soft transi-
tion to global synchronization

First, a chain with a linear distribution of the parameters
g; is explored. The evolution of the observed frequencies
Q; in dependence on the coupling is presented in Fig. 1. In
all diagrams with an increase of coupling from zero the ten-
dency to a more coherent behavior is clearly seen. Then in
dependence on the mismatch Ag, global synchronization is
observed (Fig. 1a) or is not (Fig. 1b,c). But in all cases the
increase of coupling leads to a fully incoherent behavior.
The detailed analysis of the frequency distribution Q; vs
coupling shows that the transition to global synchronization
is smooth, i.e. a gradual adjustment of frequencies is ob-
served. The reason of such “’soft” route to global synchro-
nization is the existence of two quite different time scales:
slow laminar stage and fast firing stage. It is well known
(see, for instance [17]) that the appearance and interaction
of many time scales (at least two) can lead in the oscillatory
systems to a chaotic behavior. Another consequence of the
slow-fast motion is a large value of the frequency of global
synchronization. It is close to the maximal individual fre-
quency [18]. The reason for this effect is the following.
For a sufficiently large coupling the strong change (firing)
of the dynamical variable in the elements close to the right
end of the chain is faster than in other elements. This pro-
vokes analogous strong change of the dynamical variable
in the neighboring element which also provokes his neigh-
bor and so on. This process leads to a sequential firing in
all elements in the chain.

A detailed analysis of synchronization - de-
synchronization transitions is presented for the case
of randomly distributed parameter &; in the next section.

4. Randomly distributed control parameter. Transition
to spatio-temporal intermittency

For randomly distributed &;, the evolution of the ob-
served frequency distribution is shown in Fig. 2. Three
types of transitions to global synchronization is observed
here: (i) two adjacent elements (clusters) with close fre-
quencies can be easily synchronized and a new cluster ap-
pears; (ii) nonlocal synchronization can occur, i.e. an ele-
ment (a cluster of elements) becomes synchronized not to
a nearest-neighbor element (cluster), but to some other el-
ement (cluster) having a close rotation number. At that the
observed frequencies of the elements (clusters) in-between
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Figure 1: The evolution of Q; (4) in dependence on cou-
pling for € = 0.000001 and for three different values of Ae
in the chain of 50 coupled maps. (a) Ae = 0.000001; (b)
Ag = 0.000005; (c) Ae = 0.00001

are considerably different; (iii) one element (group of ele-
ments) at the edge of one cluster can go to another neigh-
boring cluster. Similar to the case of linearly distributed pa-
rameters g; in case of random distribution of g; the regime
of global synchronization can disappear with the increase
of coupling. At the some critical value d* this regime be-
comes unstable. In the chain triangular embeddings are
formed. The onset of such embeddings in some places
in the chain leads to the propagation of firing processes in
one or more typically in both directions. Propagating firing
fronts are usually unstable and new triangular embeddings
are appearing and this process repeats. Therefore the do-
mains with a large synchronized intermittency are changed
by domains of complex spatio-temporal behavior, which
in the presented context we call spatially turbulent regime.
This spatially turbulent regime appears suddenly and ex-
tends to the whole chain, then it suddenly disappears and
in the whole chain the regime of synchronized intermit-
tency is again realized. With an increase of coupling the
duration of the spatially turbulent regime grows and cor-
respondingly the duration of the synchronized regime be-
comes shorter. After some critical value d**, the synchro-
nized regime is no more observed and the regime of fully
developed spatio-temporal intermittency (STI) sets on. The
rich spatio-temporal dynamics in the synchronous and non-
synchronous regimes is illustrated in Fig. 3. The left panel
corresponds to a non-synchronous behavior (small values
of coupling). There are several clusters of mutually syn-
chronized elements. Only panel (b) corresponds to a syn-
chronous regime. Panel (c) corresponds to the intermit-
tency of synchronized and turbulent regimes. Panels (d)
and (e) show highly developed STI. The tendency to the
complication of collective oscillations with increase of cou-
pling is clearly seen. In all plots the darker regions mark
higher values of the presented variables.

It is interesting to analyze these observed processes

by using our phase definition (3). Hence, we can state
that in the regimes of perfect (Fig. 3(b)) and intermittent
(Figs. 3(c)) chaotic phase synchronization, the phase dis-
tribution ¢; is a sequence of intervals with constant phase,
separated by +2x-kinks. The position of the kinks at con-
stant time corresponds to a phase slips. In the synchronous
regimes the phase slips appear with the frequency of syn-
chronization. In the non-synchronous regimes phase slips
appear suddenly and rather fast.

A fully incoherent state - STI - is one of the most fasci-
nating phenomena appearing in a wide range of extended
systems in several experimental situations, such as chemi-
cal reactions [19], Rayleigh-Benard convection [20], planar
Couette flow [21], fluid flows between rotating electrical
cylinders [22], Taylor-Couette flows [23] etc as well as in
theoretical models, as coupled map lattices [24] or partial
differential equations [25]. As in the mentioned theoreti-
cal works STI appears in the presented model due to the
relatively strong interaction of many units. The specific
property in our observation consists in the existence of a
transient regime from fully coherent (synchronous) to fully
non-coherent (turbulent) behavior.
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Figure 2: The evolution of observed frequencies Q; (4) for
different couplings (a) d = 0, (b) d = 0.0005, (¢) d = 0.001,
(d) d = 0.0015, and (e) d = 0.0025. & = 0.000001, Ae =
0.0000001, and N = 50

5. Conclusions

In conclusion, we have found the existence of global
and cluster phase synchronization effects in a chain of non-
identical chaotic oscillators with a type-I intermittent be-
havior. A very important feature is that an increase of the
coupling strength can also lead to desynchronization phe-
nomena, i.e. global or cluster synchronization is changed
by a regime where synchronization is intermittent with the
incoherent state. Then a regime of fully incoherent non-
synchronous state, spatio-temporal intermittency, appears.
Our results elucidate complex and intriguing collective dy-
namics of intermittent and spiking spatially extended sys-
tems, and may be used in applied problems like developed
(spatio-temporal) turbulence and complex behavior in neu-
robiological networks.
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Figure 3: Space time plots of x; for synchronous (b) and
non-synchronous regimes (a,c,d,e) for ; randomly dis-
tributed in the interval [0.000005;0.000015]. N = 50,
d = 0.001 (a), d = 0.04 (b),d = 0.0056 (c),d = 0.07
(d),d = 0.15 (e).
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