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Abstract—We study the influence of coupling strength
and network topology on synchronization behavior in
pulse-coupled networks of bursting neurons. We find that
the stability of the completely synchronous state in net-
works of coupled Hindmarsh-Rose neurons only depends
on the number of signals each neuron receives, indepen-
dent from all other details of the network topology. This
is in contrast with linearly coupled bursting neurons where
complete synchrony strongly depends on the network struc-
ture and number of cells. Through analysis and numerics,
we show that the onset of synchrony in a network withany
coupling topology admitting complete synchronization is
ensured by one single condition.

1. Introduction

Model studies of neuronal synchronization can be sepa-
rated in those where threshold models of the integrate-and-
fire type are used [1, 2] and those where conductance-based
spiking and bursting models are employed [3]. Bursting
occurs when neuron activity alternates, on a slow time
scale, between a quiescent state and fast repetitive spik-
ing. There has been much work on mechanisms that
produce such bursting [6]. In contrast to coupled spik-
ing neurons, whose synchronous dynamics is relatively
simple, interacting bursting neurons may exhibit differ-
ent forms of synchrony; including synchronization of in-
dividual spikes, burst synchronization when only the en-
velopes of the spikes synchronize, and complete synchrony
[9]. Typically, burst synchronization arises at a low cou-
pling strength whereas complete synchrony, which involves
both burst and spike synchronization regimes, requires a
stronger coupling. Models of interacting bursting neurons
often use one of two different forms of coupling depend-
ing on whether the synapse is electrical or chemical. In the
first case, the coupling through gap junctions is linear and
directly dependent on the difference of the membrane po-
tentials. In the second case, the coupling is pulsatile and
often modeled as a static sigmoidal nonlinear input-output
function with a threshold and saturation [10]. One impor-
tant question about interacting bursting neurons with such
linear and pulsatile couplings is that of complete synchro-
nization: What are the conditions for the stability of the
completely synchronous state, especially with respect to
coupling strengths and coupling configurations of the net-

work? This problem was intensively studied for linearly
coupled networks of bursting neurons [11, 12], and more
generally, of limit-cycle and chaotic oscillators [13, 14].
In particular, it has been shown that synchrony in such net-
works strongly depends on the structure and size of the net-
work.

In this paper we present a surprising find regarding the
synchronization of synaptically coupled networks of burst-
ing neurons [15]. Studying a network of pulse-coupled
Hindmarsh-Rose (HR) neurons [16], we discovered that
all that matters for the onset of complete synchrony is the
number of signals,k, received by each neuron. This is
independent of all other details of the network structure.
More precisely, the synchronization threshold is inversely
proportional to the number of incoming signalsk. This
criterion applies to a neuronal network withany coupling
topology admitting complete synchrony. For this property
to be true, each neuron must receive signals fromk oth-
ers, wherek is uniform for all neurons. The synchroniza-
tion condition we present below is not restricted to the HR
neuron, but is directly applicable to many other bursting
Hodgkin-Huxley-type neurons as well; including the 3D
Morris-Lecar [8], Sherman [11], and Wilson [17] models.

2. Network considered

In this work, we shall concentrate on networks of HR
neurons exhibiting square-wave bursting, which is very re-
sistant to synchronization. The single HR model [16] reads

ẋ = y+ ax2 − x3 − z+ I ,
ẏ = 1− dx2 − y,
ż= µ(b(x− x0) − z),

where x represents the membrane potential, andy and z
are associated with fast and slow currents, respectively.
a, d, b, I , x0, µ are parameters, andµ is small. For
the sake of simplicity, the HR model with the above set
of parameters can be transformed, using the substitution
(y, z)→ (1− y,1+ I + z), d = a+ α, c = −1− I − bx0, into
the form

ẋ = ax2 − x3 − y− z,
ẏ = (a+ α)x2 − y,
ż= µ(bx+ c− z).
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Consider now a network ofn pulse-coupled HR models.
The equations of motion are the following:

ẋi = ax2
i − x3

i − yi − zi − gs(xi − Vs)
n
∑

j=1
ci jΓ(x j),

ẏi = (a+ α)x2
i − yi , żi = µ(bxi + c− zi), i, j = 1,n.

(1)
Here, the neurons are identical and the synapses are fast
and instantaneous, i.e. time delays and internal synaptic
variables are ignored. The parametergs is the synaptic cou-
pling strength. The reversal potentialVs is assumed to be
greater thanxi(t) for all xi and all timest, i.e. the synapse
is excitatory. The synaptic coupling function is modeled by
the sigmoidal functionΓ(x j) = 1/[1 + exp{−λ(x j −Θs)}] (a
limiting version ofΓ(x j) is the Heaviside function). This
oft-used coupling form was called fast threshold modula-
tion (FTM) by Somers and Kopell [10]. The thresholdΘs

is chosen such that every spike in the single neuron burst
can reach the threshold (see Fig. 1). Hereafter, the individ-
ual neuronal parameters,Θs andVs are chosen and fixed
as follows: a = 2.8, α = 1.6, c = 5, b = 9, µ = 0.001,
Θs = −0.25, Vs = 2.
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Figure 1: The synaptic thresholdΘs and square-wave burst-
ing of the HR model.

C = (ci j ) is the n × n connectivity matrix: ci j = 1
if neuron i is connected to neuronj, ci j = 0 otherwise,
andcii = 0. Matrix C can be asymmetric such that both
mutual and unidirectional couplings are allowed. We re-

quire equal row-sumsk =
n
∑

j=1
ci j =, i = 1, ...,n. This re-

quirement is a necessary condition for the existence of the
synchronous solution, namely the invariance of hyperplane
D = {ξ1(t) = ξ2(t) = ... = ξn(t)}, ξi = (xi , yi , zi), i = 1,n. In
fact, the equal row-sum property implies a network where
each cell has the same numberk of inputs from other neu-
rons. Synchronous behavior on the manifoldD is generated
by the system:

ẋ = ax2 − x3 − y− z− kgs(x− Vs)Γ(x),
ẏ = (a+ α)x2 − y, ż= µ(bx+ c− z).

(2)

3. Stability equations for the synchronous solution

Adding and subtracting an additional termgs(xi −

Vs)
n
∑

h=1
cihΓ(xi) = kgs(xi − Vs)Γ(xi) from the x-equation of

system (1), and introducing the differences between the
neural oscillator coordinatesξi j = x j − xi , ηi j = y j − yi ,

ζi j = zj − zi , i, j = 1, ...,n in the limit when these differ-
ences are infinitesimal, we derive the stability equations for
the transverse perturbations to the synchronization mani-
fold D :

ξ̇i j = (2ax− 3x2)ξi j − ηi j − ζi j − kgsΓ(x)ξi j+

+gs(Vs − x)Γ′x(x)

(

kξi j +
n
∑

h=1
{c jhξ jh − cihξih}

)

,

η̇i j = 2(a+ α)xξi j − ηi j , ζ̇i j = µ(bξi j − ζi j ).
(3)

The derivatives are calculated at the pointξ = 0, η = 0, ζ =
0, and {x(t), y(t), z(t)} corresponds to the synchronous
bursting solution defined via system (2). The first coupling
term S1 = −kgsΓ(x)ξi j accounts for the number of inputs
k. At the same time, the contribution of the second cou-
pling termS2 = gs(Vs− x)Γ′x(x) (·) depends on the coupling

configuration. Note that the term
n
∑

h=1
{c jhξ jh − cihξih} is the

same as for linear coupling [13]. In terms of the original
variablesxi , the corresponding coupling matrixG = C−kI
is the Laplacian of the connected graph, except for a sign
change. It is well known thatG has one zero eigenvalueγ1

and all other eigenvalues have non-positive real parts [?].
The eigenvalueγ2 with the largest real part is crucial for
the stability analysis of the synchronized solution. If the
coupling is mutual,G is symmetric and all eigenvalues are
real. For simplicity, suppose thatγ2 is simple. Then, ap-
plying the linear transformation that diagonalizesG to Eq.
(3), we obtain the stability equation for the most unstable
transverse mode:

ξ̇ = (2ax− 3x2)ξ − η − ζ −Ω(x)ξ,
η̇ = 2(a+ α)xξ − η, ζ̇ = µ(bξ − ζ),

(4)

whereΩ(x) = kgsΓ(x)−gs(Vs− x)Γ′x(x)(k+γ2). System (4)
is an analog of the Master Stability function [13] for pulse-
coupled networks (1). Ifγ2 is not simple, then we can write
similar equations to system (4) for the vectors spanning the
corresponding blocks in the Jordan normal form ofG. The
stability discussion, however, is essentially the same.

4. Complete synchrony: what matters in the network
topology?

Applying the stability equation (4) to basic network con-
figurations (for the details of the proof, see [15]), we come
to the following assertion.
Statement [15]. The coupling threshold for complete syn-
chronization in the network (1) is estimated as follows:

g∗s = g(n=2)
s /k, (5)
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where k is the number of signals each neuron receives, and
g(n=2)

s is a constant corresponding to the synchronization
coupling threshold between two mutually coupled HR neu-
rons (k = 1). The estimate (5) is valid for the networks
(1) with any coupling configuration (whether global or lo-
cal, regular or random, mutual or unidirectional) under the
constraint that the number of inputs k is uniform for all
neurons.

The constantg(n=2)
s comes from the application of the

Lyapunov function method to the system (4) withn = 2
and gives an overestimate for the real coupling strength that
leads to complete synchronization of two HR neurons: 2.94
(theoretically predicted) versus 1.285 actual for the above
mentioned parameters andλ = 10. However, using the nu-
merically obtainedg(n=2)

s , we can predict the thresholdg∗s,
for anyk from Eq. (5), as shown in the numerical examples
below.

In support of this claim, we determine numerically the
threshold for complete synchronization as a function ofk
for various coupling configurations (local, intermediate and
global), and compare it to the value predicted by Eq. (5).
For g(n=2)

s , the value from simulation of two mutually cou-
pled HR neurons was used. This value isg(n=2)

s = 1.285 for
λ = 10 andg(n=2)

s = 1.139 for λ = 50. From the results
shown in Fig. 2 it can be seen that the prediction is nearly
perfect. Note that even for largeλ, when the synaptic func-
tion Γ(xi) approaches the Heaviside function, the estimate
(5) gives an excellent numerical prediction.
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Figure 2: Synchronization thresholdsg∗s in a ring of 2K-
nearest neighbor coupled HR neurons as functions ofn
for various coupling configurations (differentK). Markers:
Simulation results. Solid line: Prediction of Eq. (5).

Note that the synchronization threshold in locally synap-
tically coupled networks is constant;g∗s = g(n=2)

s /2 for mu-
tually nearest-neighbor coupled neurons, and does not de-
pend on the number of neuronsn. This is in sharp con-
trast with linearly coupled networks where the coupling
required for stable synchronization has a quadratic depen-
dence onn [14].

To illustrate the power of condition (5) even further we
have simulated -in addition to the regular, mutually cou-
pled networks from Fig. 2- a series of randomly generated
unidirectionallycoupled networks of HR neurons with uni-
form number of synapses as those shown in Fig. 3. For all
simulated networks, numerical results are nearly identical

to the analytical predictions of Eq. (5).

(a) (b)

(c) (d)

Figure 3: Examples of the unidirectional random networks
simulated. Ten networks of each type,(a) n = 9, k = 3;
(b) n = 9, k = 4; (c) n = 16, k = 4; (d) n = 32, k = 4
were generated randomly. The synchronization threshold
for networks of type (a):g∗s = 0.429 forλ = 10, andg∗s =
0.380 forλ = 50; and of types (b), (c), and (d):g∗s = 0.322
for λ = 10, andgs = 0.285 forλ = 50. All the calculated
thresholds coincide perfectly withg(n=2)

s /k.

Finally, we have tested robustness of the synchroniza-
tion with respect to a mismatch in the synaptic strengths.
We have simulated networks of 20 neurons for the local,
intermediate and global cases, introducing a mismatch in
the synaptic strengths around the averagegs. Perfect syn-
chronization is no longer possible in these cases, due to the
absence of the synchronization manifold, and there is al-
ways an error in the synchronization. However, for a given
value ofgs this error falls rapidly and then remains constant
whengs is further increased. This point can be seen as the
coupling threshold for the approximate synchronization. In
all simulated cases this value is nearly identical to the syn-
chronization threshold without mismatch as shown in Fig
2. The synchronization has been verified to be robust for
mismatches ings of up to 5%.

In summary, the single condition (5) ensures the onset of
complete synchronization in networks of synaptically cou-
pled bursting neurons (1) with any coupling topology in
which each neuron receives signals fromk others. The syn-
chronization condition depends on the number of inputsk
andnot on the connectivity matrix. The equalk constraint
is often invalid for biologically relevant networks with a
complex structure where the number of inputs is not nec-
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essarily constant, but ifk is uniform for a group of neu-
rons, synchronization within this group of neurons can oc-
cur. The synaptic strengths can also change as a result of
pre- and postsynaptic cell activity such that the inputs to the
neurons become equal only for a specific interval of time.
The consequence is transient synchronization [18] that is
believed to be a collective mechanism for spatiotemporal
neuronal integration. This work promises to allow an an-
alytical treatment of even temporal synchrony in bursting
cells.
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