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Abstract—To obtain a sparse time-frequency represen-
tation of a speech signal, which still reflects the evolution of
its characteristics in time, consists a great problem. Despite
its disadvantages, the spectrogram is traditionally used for
this purpose. In this contribution we examine the potential
of 1) atomic decomposition methods and 2) time-frequency
distributions with respect to speech signals.

1. Introduction

Speech signals are highly transient, consisting of voiced
segments exhibiting a well-defined frequency structure,
which are separated by noise bursts (consonants). It is
therefore a great problem to devise a representation for
a speech signal which 1) reflects the evolution of its fre-
quency contents, 2) is sparse and robust with respect to
noise, and 3) conveys all relevant time-frequency informa-
tion. If such a time-frequency representation of a speech
signal has been found, auditory scene analysis can be per-
formed by using an appropriate clustering algorithm.

Traditionally, the spectrogram has been used for ob-
taining a time-frequency representation of speech signals.
However, the disadvantage of the spectrogram consists in
the inherent trade-off between time and freqency resolu-
tion, which is determined by the window function used in
the short-time Fourier transform. If a sufficient time res-
olution is to be maintained, this has to be paid for by a
blurring of the frequency components. Although it is im-
possible, due to Heisenberg’s uncertainty principle, to si-
multaneously locate a signal component in time and fre-
quency (see e.g. [1]), alternative time-frequency represen-
tation methods, that come closer to this Heisenberg limit,
have been proposed [2, 3, 4]. However, each of these meth-
ods also has its advantages and drawbacks, depending on
the class of signals to which they are applied.

In this contribution, different types of time-frequency
representation methods for analyzing speech signals are ex-
amined. In general, two classes of time-frequency repre-
sentation methods exist: 1) Atomic decomposition meth-
ods and 2) time-frequency distributions. In the first case,
the signal is decomposed into a set of basis functions,
which are chosen from an overcomplete dictionary. Prefer-
ably, the basis functions are concentrated in time and fre-
quency. Optimal results are obtained if, in addition, these
basis functions capture essential characteristics of the sig-

nal. Therefore, the selection of an optimal dictionary re-
quires a-priori knowledge about the time-frequency struc-
ture of the signal. Wavelet decomposition, matching and
basis pursuit methods belong to this class.

Alternatively, the distribution of the signal energy in time
and frequency can be considered. This leads to the class
of time-frequency distributions, where the bilinear distri-
butions play a major role. The Wigner-Ville distribution,
which originally has been proposed in the context of theo-
retical problems in quantum mechanics [5] is the earliest,
and most well-known, member of this class.

2. Atomic Decomposition Methods

Suppose we are given a signal f(t) ∈ L2 (R (e.g. recorded
speech), which is decomposed into a set of functions φi(t),
which are well localized in time and frequency,

f =
∑

φi∈Γ

αiφi, (1)

The “time-frequency atoms” φi, are chosen from a dictio-
nary Γ. Γ may constitute a basis of L2 (R), or it may be
overcomplete. In the latter case, several subsets of Γ consti-
tute a basis for L2 (R), so that different selections of φi ∈ Γ

are possible. When using an appropriate basis selection
method, this freedom may allow for a better, i.e. sparser,
representation of the signal f(t).

A sparse representation of f(t) is obtained if only a small
number m of coefficients αi assume an appreciable value,

f =
n
∑

i=1

αiφi + R(m)( f), φi ∈ Γ, (2)

where R(m)( f) denotes the residual. This decomposition
should reflect the time-frequency content of the signal f .

A graphical representation is obtained by weighting the
time-frequency support of φi by the coefficient |αi|; this pro-
vides a measure for the “energy of interaction” between the
signal f and the time-frequency atom φi. An optimal time-
frequency representation of the signal would thus allow
to “read off” its fundamental constituents – provided that
these are reflected by some time-frequency atoms φi ∈ Γ.

One way to fast and efficiently obtain a signal decom-
position (2) is to use wavelet analysis, where the dictio-
nary Γ consists of wavelet functions, that are derived from
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a mother wavelet by dilations and translations. However,
since speech signals do not exhibit scaling properties, the
application of the wavelet decomposition to speech signals
proves less valuable: For example, the formant structure of
voiced speech segments demands a fine frequency resolu-
tion, even at high frequencies, while the resolution of the
wavelet decomposition rapidly decays at higher frequen-
cies [6]. Therefore, other dictionaries Γ, containing atoms
φi that are better adapted to the properties of speech sig-
nals, must be used. In the following section, two methods
for signal decompositions using arbitrary dictionaries are
introduced.

In 1993, Mallat and Zhang [7] proposed an algorithm
for stepwise obtaining a sparse approximation (2). We start
with f0 = 0 for the initial approximation of the signal f ,
and R(0) = f for the residual. At each step k. the basis
function φk ∈ Γ is chosen such that the modulus of αk =<

R(k−1), φk > is maximal (where R(k−1) = f − fk−1 denotes
the residual at step k − 1 and < ·, · > is the scalar product).
The procedure may either be stopped after n steps (where
n is determined in advance), or if ‖Rn‖ falls below a pre-
determined threshold.

For non-orthogonal dictionaries Γ, however, unsatisfac-
tory results may occur. Since the algorithm is myopic, it
may choose wrongly in the first few iterations. As a conse-
quence, the resulting error must be corrected in many sub-
sequent iterations, leading to a non-optimal signal decom-
position. For resolving this problem, sophisticated methods
like back-fitting [7] and orthogonal matching pursuit [8, 9]
have been devised.

The principle of basis pursuit [10, 11] is to find a repre-
sentation of the signal f such that the decomposition coef-
ficients αk have minimal `1-norm,

min ‖α‖1 =
∑

k

|αk| for
∑

k

αkφk = f. (3)

In contrast to matching pursuit, basis pursuit is a global op-
timization principle, which leads to a convex optimization
problem. While matching pursuit builds up the decompo-
sition step by step, basis pursuit starts with the full model
and improves it by swapping atoms for more useful ones.
Therefore, in comparison to basis pursuit, matching pursuit
is sub-optimal. The minimization of the `1-norm consti-
tutes a computationally demanding problem, which can be
efficiently implemented by using recent advances in linear
programming theory (interior point methods, [12]).

3. Time-Frequency Energy Distributions

3.1. Bilinear Distributions

The Wigner-Ville distribution (WVD)

W(t, ω) =
1

2π

∫

f∗
(

t −
τ

2

)

f
(

t +
τ

2

)

e−iτωdτ, (4)

=
1

2π

∫

f̂∗
(

ω +
θ

2

)

f̂
(

ω −
θ

2

)

e−itθdθ, (5)

plays a central role among the time-frequency energy dis-
tributions. It leads to optimal time-frequency resolution
for linear chirp signals. Since the WVD is bilinear, how-
ever, if different signal components are present, or if the
frequency modulations are nonlinear, cross terms are gen-
erated. For broad-band, multi-component signals, like
speech, this makes the obtained time-frequency represen-
tation difficult to interpret.

Moreover, the WVD may attain negative values (again
with the exception of Gaussian linear chirps), which ren-
ders its interpretation as an energy density difficult. It has
been shown [3] that the occurrence of negative values is
closely linked to the emergence of the (rapidly oscillating)
cross terms. The construction of purely positive distribu-
tions (see below) may thus serve to reduce cross terms.

For finite duration signals, the WVD leads to boundary
effects. A windowed version of the WVD,

Wps (t, ω) =
1

2π

∫

h∗
(

−
τ

2

)

f∗
(

t −
τ

2

)

h
(

τ

2

)

f
(

t +
τ

2

)

e−iτωdτ,

=

∫

S∗f (t, ω − θ)S f (t, ω + θ)dθ, (6)

called the Pseudo-Wigner distribution (PWD), resolves this
problem. h(t) denotes the window function (e.g. Hanning
window), and S∗f (t, ω) is the short-time Fourier transform
(STFT) of f(t).

In order to reduce the emergence of cross-terms, several
methods have been devised. The kernel method consists in
convolving the WVD by a suitably chosen kernel, φ(θ, τ),
resulting in a new bilinear distribution,

C(t, ω) =
1

4π2

∫∫∫

f∗ (u−
τ

2
)s(u+

τ

2
)φ(θ, τ)e−iθτ−iτω+iθududτdθ.

(7)
It has been shown [2] that every bilinear time-frequency
distribution can be expressed in this way (where the ker-
nel φ(θ, τ) has to satisfy several conditions). In particular,
the kernel may be chosen in such a way as to reduce the
emergence of cross terms. A frequently used example is
the Choi-Williams kernel [13]. However, with respect to
speech signals the Choi-Williams distribution proves still
unsatisfactory. The S-method and the class of positive dis-
tributions appear to have a larger potential for the analysis
of speech signals.

3.2. S-Method

The S-Method [4] is obtained by convolving the Pseudo-
Wigner distribution (6) by the window function P(θ),

SM(t, ω) =
∫

P(θ)S ∗f (t, ω − θ)S f (t, ω + θ)dθ. (8)

Evidently, the choice P(θ) = δ(θ) reduces SM(t, ω) to the
STFT; on the other hand, using P(θ) ≡ 1 leads to the
Pseudo-Wigner distribution (6). Optimal results may be
obtained by choosing

P(θ) =

{

1 ∀ |θ| ≤ Lp

0 else,
(9)
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Figure 1: Matching pursuit method (local cosine-packet
dictionary, 100 basis functions) applied to the Japanese
word “arigato” (panels (a) and (c)) and to a superposition
of the vowels /u/ and /e/ (panels (b) and (d)). (a) and (b):
Time-frequency supports; (c) and (d): support weighted by
decomposition coefficients.

where Lp denotes the length of the rectangular window
P(θ), which may be adaptively determined, depending on
the signal properties.

3.3. Positive Time-Frequency Distributions

It has already been stated that the emergence of cross-
terms is linked with the non-positivity of a time-frequency
distribution. The construction of positive time-frequency
distributions (PTFD) may therefore lead to sparser repre-
sentations.

It has been pointed out [4] that the searched optimal
PTFD of a not too violently varying signal f(t) can be rep-
resented by a convolution of its spectrogram F f (t, ω) with
WVD of the analysis window, W(t, ω),

F f (t, ω) ≈
∫∫

P(τ, θ)W(t − τ, ω − θ)dτdθ. (10)

As it is necessary that W(t, ω) be non-negative everywhere,
a Gaussian function must be chosen for the analysis win-
dow. The PTFD P(t, ω) is then recovered by applying a
deconovolution algorithm [14].

4. Application to Speech Signals

Different time-frequency representation methods have
been applied to short speech segments, consisting of a) the
superposition of two vowels and b) a short Japanese word
(“arigato”).

Fig. 1 displays the results obtained from the match-
ing pursuit method. Fig. 1 has to be compared with the
results obtained from time-frequency energy distributions
(Figs. 2 and 3). As a first observation, we note that the

Figure 2: Time-frequency representations of the Japanese
word “arigato”.

time-frequency distributions reveal a richer signal structure
than the matching pursuit method (Fig. 1 (a), (c) vs. Fig.
2). This can be explained by the choice of the dictionary:
Since we chose a local cosine packet dictionary (which
leads to fast convergence of the matching-pursuit algo-
rithm), frequency modulations of harmonic speech com-
ponents are not matched by members of the dictionary.
Instead, a superposition of a large number of low-energy
time-frequency atoms is needed in order to take account of
such components. Since the number of atoms used in the
representation was restricted, however, these low-energy
components were discarded completely. If this maxi-
mal number was increased, in the resulting time-frequency
representation the characteristics of the signal (frequency
modulation of single harmonic components) would still re-
main masked by the emerging large number of constant-
frequency atoms.

This problem could be resolved by using a dictionary

547



consisting of frequency-modulated atoms (chirplets) [15].
As the number of elements of such a dictionary is vastly
increased in comparison to the previous situation, matching
pursuit encounters a considerable computational demand.

When comparing the different time-frequency distribtion
methods (spectrogram, S-method and PTFD) we observe
that the PTFD leads to the highest time-frequency resolu-
tion. In particular, the beats originating from constructive
and destructive interference when superimposing vowels
/u/ and /e/ (and which are perceived when listening to the
sample), are clearly revealed by the PTFD.

In order to improve the performance of the matching pur-
suit method, we propose that the PTFD or the S-method is
computed first. This provides information about location
and modulation properties of different harmonic speech
components. This information may then be used to effi-
ciently search for time-frequency atoms in a large dictio-
nary, which contains elements that account for frequency
and amplitude modulation.
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