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Abstract—In biological neural networks, the noise
component is often of a size comparable to the - under these
conditions not so well defined - signal strength. This and
the as yet unexplained computational efficacy of biolog-
ical systems is of particular interest to technical applica-
tions, since miniaturization drives hardware chips naturally
towards conditions where noise and precision need to be
complementarily used, to encode and process information.
Our theoretical explanation of how this can be achieved is
based on weakly coupled neurodynamical limit-cycles. In
order to account for physiological conditions, we investi-
gate the properties of locking in nontrivial network struc-
tures and draw conclusions on the optimal organization of
neural networks, if information processing is by means of
phase locking. We find that the network structure has a
decisive role on the laws of information transport in such
systems.

1. Introduction

In 1657, Christiaan Huygens [1] revolutionized the mea-
surement of time by creating the first working pendulum
clock. In early 1665, he discovered “.. an odd kind of sym-
pathy perceived by him in these watches [two pendulum
clocks] suspended by the side of each other.” The pendu-
lum clocks swung with exactly the same frequency and 180
degrees out of phase; when the pendulums were disturbed,
the antiphase state was restored within a half-hour and per-
sisted indefinitely. Huygens deduced that the crucial in-
teraction for this effect came from “imperceptible move-
ments” of the common frame supporting the two clocks.

These observations are part of a set of properties that
are generic for any weakly coupled limit-cycle systems:
1) Phase and frequency locking, 2) Farey-tree ordering of
winding numbers, 3) devil’s staircase structure of locked
intervals [2]. These properties distinguish synchronization
among limit cycles from synchronization among chaotic
systems. In the latter case, the nonlinearity is usually max-
imally chosen, in order to generate chaotic individual sys-
tems. Coupling then leads to a synchronization hyperplane
for the symmetric solution, which is, upon a further in-
crease of the coupling, usually lost by means of a blow-
out bifurcation [3]. In the coupling of the limit cycles, the
systems that synchronize are generally not identical, which
gives rise to higher-dimensional periodic solutions rather

Figure 1: Huygens’ clocks, jointly suspended from a com-
mon construction.

than to synchronized chaotic solutions. Here, an infinity of
states of synchronization is primarily due to the individual
frequencies of the limit cycles, and not so much to the non-
linearity. The nonlinearity resides in the coupling, and can
be chosen arbitrarily small.

2. Chaotic neurons or not?

The question of whether neurons can be chaotic in them-
selves, or not, has not been answered so far. Selverston et
al. [4] have found that somatogastric ganglion cells can
behave chaotically. However, the questions of how re-
alistic their experimental situation is and how significant
these neurons are for cognition, appear difficult to assess.
We have shown [5] that connected neurons in slice, when
driven by constant currents, engage in locking. For this
system, we have identified the Arnold tongues along which
these lockings emerge, by using experimentally derived
phase-return functions

f : I → I : xi+1 = xi + Ω + g(K, xi), (1)

where xi ∈ I = [0, 1] is the phase of the incoming perturba-
tion with respect to the system perturbed, Ω is the ratio of
the firing frequencies of the two involved neurons, K their
interaction strength, and g(xi) = T (xi)/T0 is the phase re-
sponse function. This function indicates to what extent the
interval T0 between two adjacent firing events is modified
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by a perturbation of strength K arriving at phase xi [5]. For
inhibitory pair-coupling, the phase-return function can be-
come chaotic. This, however, only at very high interaction
strengths on a small, though nonzero, part of the parameter
set [5]. On one hand, this justifies the analytical model-
ing of pyramidal neurons by means of limit cycles, on the
other hand it also yields insight into the ways these neurons
could use to encode and process arriving information. One
may, however, argue that these experiments poorly corre-
spond to the realistic biological behavior, as the quasistatic
conditions used in these experiments are difficult to find
within the ever-varying currents characteristic for the in
vivo brain.

To investigate the validity of these arguments, we have
studied neuronal in vivo time series. We found regular
and chaotic responses where of the samples, ∼ 1

3 was
low-dimensional chaotic; ∼ 1

3 was high-dimensional with
no real scaling properties, and ∼ 1

3 showed random spik-
ing behavior many of them with long-tail distributions [6].
From our in vitro experience, we attribute this to network-
induced effects. The first two groups we believe to be gen-
erated by chaotic modulations of the network input (po-
tentially even of endogenous origins), whereas for the last
group we believe local interactions with no dominating
contributions to be responsible. We therefore investigated
whether freqency and phase locking could emerge for bio-
logically strongly connected detailed neuron models when
driven by temporally strongly variable currents, and found
this indeed to be the case [8]. In comparison to the corre-
sponding slice experiments, the stabilization, however, ap-
pears to be delayed, as if a mechanism were built into the
biology dedicated to a faster stabilization.

3. Physiological basis of phase-locking

The outcome of these experimental and numerical ex-
periments indicates that locking could provide a valuable
means for information coding, in the frequency as well as
in the temporal coding sense. The question of whether the
brain uses a frequency or a temporal code has been dis-
cussed fiercely, but is still not resolved. Our work shows
that locking provides a mechanism that is working in both
paradigms, in particular as quite generally phase-locking
is accompanied by frequency-locking (see Fig. 2). The
only necessary condition for locking to take place is a suf-
ficient distinction between the modulations of the driving
and the neuron’s intrinsic firing frequencies, and a separa-
tion into weak and strong inputs. As a realization of this
paradigm, many of the weak synapses could drive the neu-
rons, whereas strong ones – or a few synchronized ones –
would provide the locking. As the mechanism for estab-
lishing this, synaptic plasticity emerges.

Locking among biological neurons thus requires a de-
gree of separateness between CLT-like noisy drivings, and
strongly coordinated pulses among the locked neurons. Is
such a situation likely to occur, taking into account the

physiological facts? It has recently been observed that
when a neuron is stimulated according to some regular pat-
tern (as would emerge yet from very weakly locked neu-
rons), this may trigger LTP and STP mechanisms, which
may facilitate the synapses’ efficacy by a factor of 1.5 [7].
I.e., locking is a self-enhancing process, up to the extent
allowed by this factor. In the Arnold picture, this effect can
be associated with an increase of K by an identical factor.
Yet another observation in the field of physiology comes at
the aid of the proposed mechanism. In hippocampus, two
clearly distinguishable classes of synapses emerge, that dif-
fer in their release probability by a factor of about 6, which
also should transfer into similar classes of efficacy. The
percentage of efficient synapses is relatively small (∼ 15
vs. 85%), which seems compatible with the situation we
envisage. If we have about 100 active synapses of small
efficacy from estimated 50 − 100 neurons needed for the
firing of the target neuron, already one strong synapse (or a
small number of temporally synchronized strong synapses)
could indeed be sufficient for leading to the above-outlined
situation.

4. Nontrivial topologies of phase-locked networks

Bi-directional coupling: The described locking among
neurons – in biophysically crude and detailed models – has
been tested so far only for the most simplest topology, the
mono-directional coupling between two neurons. For tem-
porally interluding mono-directional coupling, we would
have to deal with two phase-return functions

f 1 : x1
i+1 = x1

i +
1
Ω
−g2(K1, x1

i ), f 2 : x2
i+1 = x2

i +Ω−g1(K2, x2
i ).

For truly bi-directional coupling, the phase-return func-
tions changes [9] into

f (xi, s = 0) =
1
Ω

g1(Ω(g2(xi) − xi) − g2(xi) + xi, (2)

where s + 1 counts how many times neuron 1 spikes be-
fore neuron 2 spikes. The above given map for s = 0
can be used to define more complicated interactions in-
volving multiple interspike perturbations recursively: If
f (xi, 0) > 1 then s = 1, if f (xi, 1) > 1, then s = 2,
etc. Using this approach, we can prove that both neurons
will display the same qualitative firing behavior (periodic,
quasiperiodic, chaotic). They cannot display chaotic be-
havior if none of them is supercritical. For two excitatory
neurons, chaos therefore cannot be generated. A unique
stable solution emerges for two inhibitory or two excita-
tory bi-directionally coupled neurons. However, unique-
ness will fail for excitatory/inhibitory coupling, if the exci-
tatory neuron has a larger period than the inhibitory neuron
[8].

Chains and rings of length three: Chains and rings of
length three constitute the next-complicated case. Here,
the motion is confined to a 3-torus that can be reduced
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by means of a Poincaré section to a 2-torus. The 2-
dimensional torus map could now, in principle, display
chaos, even if it is invertible. This, however, happens only
within the fully locked region on a very small set of sys-
tems. The nature of the points in the set is that of unstable
periodic orbits, giving rise to structurally unstable, unob-
servable, chaotic motion. The number of elements to be
synchronized offers the possibility of partial or complete
phase locking. In the first alternative, only two of the three
neurons are phase-locked. As in the case of two neurons,
the phase-locked regions can be described by a general-
ized Fairy construction for three relatively prime frequen-
cies {px, py, q}. The quasiperiodically forced circle map

xi+1 = xi + Ωi +
K
2π

sin(2Πxi) mod 1, (3)

with Ωi a quasiperiodic sequence, falls within this type of
topologies, as it can be viewed as the case of a neuron
perturbed by two other ones by means of equal perturba-
tion strength. However, also more general types of inter-
action are described by the Fairy paradigm. When trans-
lated into geometrical language, the latter implies that on
all commensurate lines of frequencies, there exists a par-
tially phase-locked strip. At intersection points of the lat-
ter, completely phase-locked states emerge. Only if the
two perturbing inputs of a single neuron do not commu-
nicate, their Lebesque measure will be zero. Because of
the underlying common building principle, one can assume
that the metric properties between the different topologies
(directed, bi-directional, ring) can be continuously trans-
formed one into another by means of variation of their con-
nection strengths [9].

5. Computation by phase-locking

Locking among neurons can be understood as a compu-
tation by which, from two frequencies, the periodicity of
the locking emerges as the result. This paradigm has im-
portant features that seem to make it attractive as a model
of general biophysical computation. First, the way the re-
sult is encoded is Huffman-like. With the largest measures
of the input spaces, the simplest result (period one, having
the shortest respresentation) is associated. Moreover, this
result also is the most stable with respect to perturbation
by noise. Second, the result is invariant with respect to a
common driving of the inputs. From an axiomatic formu-
lation of the computation in neuronal networks, this would
emerge as an obvious postulate. We note that this property
in particular requires sufficiently linear input/frequency re-
lationships of the computational elements. That this is in-
deed the case has been verified in detailed neuron models
(see Fig. 2). Third, as a result essentially of the first prop-
erty, the computation is self-refining. Given a longer time,
or higher firing frequencies when sweeping over the input
relationships, more details, i.e. higher periodicities indicat-
ing a refined computation, can be resolved (see Figs. 2, 3).
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Figure 2: Frequency locking among detailed neuron mod-
els driven by inputs I1, I2, using the NEURON simulation
environment [10]. Stripes of periodicities are labeled by
their periodicity P, see [8].
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Figure 3: Emerging periodicities when sweeping over
Ω (one frequency was held fixed, the other was var-
ied). For faster sweeping, only the most fundamental fre-
quencies would be detected, for higher frequencies (or
slower sweeping), more details of the Fairy ordering would
emerge [8].

6. Transport of information

Transport of information in phase coupled map lattices is in
remarkable contrast to that found in chaotic maps, which is
why we recollect the properties of the latter quickly. In map
lattices of chaotic maps, the information transfer increases
with the number of connections. In a nearest neighbor cou-
pled map network, the speed of information transfer can be
calculated by the spreading of the wave front initiated by
perturbing the original system and comparing it with the
unperturbed one [11]. It can be shown that the speed of the
information transfer originates from two contributions, the
instability of the individual lattice map and the Gaussian
spreading contribution. Using the convective Lyapunov ex-
ponent µ, the critical velocity emerges as

v∗ = (4Dµ)
1
2 , (4)
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where D is the diffusion coefficient that can be calculated
from a Markov model of the perturbation, using a one-
dimensional random walk. By performing the analysis
for bi-power adjency topology, it is found that fractally
coupled networks that have next-neighbor coupling in the
vicinity and power-law decaying far connections, minimize
the number of connections needed to attain a given veloc-
ity. They are superior to single power-law networks on the
one hand and to next neighbor networks on the other hand,
where the latter network emerges as the least efficient net-
work type.

The above result already indicates that a constant prop-
agation speed as defined above, cannot be obtained from
phase-coupled map lattices. How then can information, ex-
pressed as the result of such computations, be transported
through the network? First, we investigated directed phase-
coupled chains. In the beginning, the neuron periods are
chosen arbitrarily from the interval [0.95, 1.05] and the per-
turbation strengths from [0.4, 0.8]. After an initial tran-
sient, all neurons fire regularly, with individual frequencies.
Mimicking an arriving signal, the input period to the first
neuron is then varied within [1, 2]. When using equal fre-

Figure 4: Decay of the information as a function of the
neighbor distance k. The maximal phase difference xk

max −
xk

min (the maximal interspike interval difference T k
max−Tk

min,
respectively) is evaluated as a function of the neighborhood
k. A power-law decay is found for linear directed chains
[9].

quencies and a quasiperiodic golden-mean signal, we find
that mono-directional chains and bi-directional rings dis-
play very different transport properties. Whereas in the first
case the readability of a transmitted code falls off with the
order of the neighbor according to a power law, in the bidi-
rectional ring, the corresponding property obeys an expo-
nential law.

7. Recurrent networks

This result can be interpreted from the point of view of
computation. In biology, computation means the destruc-
tion of information. Writing down the inputs to the compu-

tation would in principle allow reversible computing. How-
ever, in the context of biology, where ressources are han-
dled with care, we consider this to be a non-typical case.
Rather, we should assume that in biological networks the
information will wear out across the different computa-
tional units. The obtained results corroborate this point
of view. A typical topological setting for biological neu-
ral networks are recurrent networks. In the simplest forms,
these can be approximated by the bi-directional ring topol-
ogy mentioned above. The fact that for this network an
exponential decay is found, can be interpreted in the com-
putational context as an indication of the superior computa-
tional potential of recurrent network topologies that is gen-
erally attributed to these systems.

Figure 5: Decay of the information as a function of the
neighbor distance k. The maximal phase difference xk

max −
xk

min (the maximal interspike interval difference Tk
max−Tk

min,
respectively) is evaluated as a function of the neighborhood
k. An exponential decay law is found for bi-directional
rings [9].
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