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Abstract—We demonstrate the design and performance
of an artificial Hopf-type electronic cochlea along biomor-
phic biophysically detailed principles. From a biophysi-
cally detailed model of the mammalian cochlea, we first
derive a biomorphic close-to-hardware software simula-
tion that is used as the hardware blueprint. By virtue of
its biomorphic design, the hardware implementation yields
results that are hardly distinguishable from physiological
measurements, at a minimum of implementation costs.
Moreover, the silicon cochlea shares all the signal process-
ing features exhibited by the biological cochlea. In partic-
ular, it may be actively tuned, towards objects provided by
an analysis of the auditory scene. With these properties it
can serve as the central ingredient for overcoming the well-
known cocktail-party problem of hearing.

1. Introduction

Understanding hearing is a long-standing human endeav-
our. The first basic step in understanding the cochlea
(the mammalian hearing organ) was achieved by H.L.F.
Helmholtz, who suggested the cochlear tonotopic princi-
ple to hold (1863 [1]). Von Békésy’s discovery of trav-
eling waves along the basilar membrane (BM) within the
cochlea (1928 [2]) and Gold’s conjecture of active ampli-
fication in the cochlea (1948 [3]) were the following land-
marks, where the latter was evidenced by the discovery of
otoacoustic emissions (1978 [4]), the autonomous sound
generation mechanism by the cochlea itself. Since then,
various experiments revealed that the locus of active ampli-
fication is in the outer hair cells (OHC) residing on top of
the basilar membrane [5-6]. Recently, cells homologous to
mammalian hair cells were shown to display active, Hopf-
type amplification [7-8].

For auditory modeling, Eguı́luz et al. [9] proposed in
their seminal paper to include Hopf amplifiers as the basic
elements. They argued that these nonlinear elements could
correctly capture the basic phenomena of hearing: Com-
pression of the dynamic range, sharper tuning for lower
intensity sounds, and the generation of combination tones
(see also [10]). Here, we demonstrate the final biomorphic
electronic realization of this concept. Departing from our
previous theoretical cochlea model, we show that the re-
sponses obtained from the electronic realization are hardly
distinguishable from biophysical measurements.

2. The Hopf-cochlea differential equation

In the cochlea, mediated by the cochlear fluid, incom-
ing sound pressure variations transform into incompress-
ible and inviscid hydrodynamic waves that move along
the BM [11], causing small BM displacements. Using x
to denote the distance from the stapes along the unrolled
cochlea, the system can be linearly described by a water-
surface wave that is endowed with a surface mass density
m and exponentially decreasing transversal stiffness [12]
E(x) = E0e−αx. According to this theory, the wave group
velocity vG, the wave vector k, and the stationary energy
density distribution e(x, ω), satisfy the relation [13]

vG =
∂ω

∂k
=

E(x)ρ
2ω

kh + sinh(kh) cosh(kh)
(mk sinh(kh) + ρ cosh(kh))2

. (1)

Characteristic frequencies ωc(x) correspond to BM loca-
tions x = xc(ω) of maximal (passive) displacements ac-
cording to

ωc(x) =
√

E(x)/m (2)

(which defines the first tonotopic map) [13]. It can be
shown that k(x, ω) diverges as ω approaches ωc(x) and that,
as x approaches xc(ω) for fixed ω, the traveling wave stalls
(vG = 0) at the point of (passive) resonance. Due to dissi-
pative losses, the wave amplitude will reach a maximum at
x < xc(ω), which, consistently with von Békésy’s original
observations, defines a second tonotopic map [13]). From
the energy balance equation [14] valid for linear and non-
linear waves alike, ∂e

∂t +
∂
∂x (vGe) = 0 and using the ansatz for

the energy density ∂e
∂t =: −a + de, the cochlea differential

equation emerges as [13]

∂e
∂x
=

−1
vG(x, ω)

[
∂vG(x, ω)
∂x

+ d(x, ω)

]
e +

a(x, e, ω)
vG(x, ω)

. (3)

In this equation, the power a(·) locally supplied by the ac-
tive Hopf amplification, works against the internal viscous
losses (d(x, ω) = 4ν k(x, ω)2, where ν is the kinematic vis-
cosity [15]). In accordance with the biological example,
the active amplification results from an array of Hopf-type
power sources along the BM, that have varying natural fre-
quencies ωch(x). Given a forcing frequency ω, the Hopf
amplifiers with ωch(x) ≈ ω are maximally excited at loca-
tions xch(ω) < xc(ω), before viscosity leads to a precipitous
decay of the wave amplitude.
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3. Hopf nonlinearity

The characteristics of the active contribution a are de-
rived from a ωch-rescaled Hopf differential equation

ż = (µ + j)ωchz − ωch |z|2 z − ωchF(t), z ∈ C. (4)

Assuming a 1:1 locking between signal and system, z(t) =
Rei(ωt+θ) is the amplified external periodic input F = Feiωt,
ωch is the natural frequency of the oscillation, and µ ∈ R de-
notes the Hopf nonlinearity parameter. With zero external
forcing, (4) describes the generic differential equation dis-
playing a Hopf bifurcation: For µ < 0, the solution z(t) = 0
is a stable fixed point, whereas for µ > 0, the fixed-point
solution becomes unstable and a stable limit-cycle of the
form z(t) =

√
µeiωcht appears.

A nonzero forcing F yields ωchFe− jθ = (µ + j)ωchR −
γωchR3 − jωR. Squaring and introducing φ = ω

ωch
results in

F2 = γ2R6 − 2γµR4 +
[
µ2 + (1 − φ)2

]
R2, (5)

which is easily solvable. For µ = 0 and close to resonance
ω = ωch, the response R = F1/3 emerges, which forces the
gain G = R/F = F−2/3 to increase towards infinity as F
approaches zero. This implies a compressive nonlinearity,
for any stimulus size. For µ < 0, maintaining ω = ωch,
we obtain the response R = −F/µ for weak stimuli F. As
F increases, the term R6 in Eq. (5) can no longer be ne-
glected, and, as γR6 ≈ µ2R2 + 2γµR4, the compressive
nonlinear regime is entered. The transition point occurrs
at FC ≈ 0.91(−µ) 3

2 /γ
1
2 . For weak stimuli F, the response

R is nearly linear, while for moderate stimuli the differen-
tial gain of the system, dR/dF, decreases with increasing
stimulus intensity. Away from the resonance, the last term
in (5) dominates. In this case, the response is linear for ev-
ery input, as R ≈ F/|1 − φ|. For µ > 0, stable limit-cycles
emerge.

In the biological cochlea, the tensile forces acting on
the stereocilia tip links, can be considered as the input
F(t) to the Hopf system Eq. (4). Using the equiparti-
tion principle, the BM amplitude A has the form A(x, ω) =
(2e(x, ω)/E(x))1/2. For an ensemble of Hopf oscillators ac-
tive at location x, the force amplitude will be proportional
to R and have the form a(e, x, ω) = L(R(

√
σe(x, ω)))2,

where L and σ are proportionality constants [13]. The last
two relations establish the connection between our cochlea
ODE and physiological measurements.

4. Circuit design

Via direct simulations of the differential equation, results
for stationary inputs are obtained that are very close to
those by the physiological example [13]. For transient sig-
nals, however, the equation is beyond usability, due to the
computational demand. To remedy this situation, we de-
composed the cochlea into sections of characteristic fre-
quencies, each of which is endowed with models of the

passive hydrodynamic behavior and of the active Hopf-type
amplification. An electronically implemented steady state
approximation of the driven Hopf amplifier in combina-
tion with a simple fluid transfer function (implemented as
a frequency-specific filter), is used as the skeleton of our
implementation. The major challenge of our approach is
to first properly connect the passive/active components to-
wards a section, and then the latter towards a cascade, now
modelling the entire cochlea.

Hopf part: The Hopf equation (4) can be approximated
in circuitry using a combination of integrative summers and
multipliers [17]. Using vz = vx + jvy, the equations

v̇z =

( −vµ
mCRµ

+
j

CRω

)
vz − |vz|2vz

2m2CRγ
− vF

CRF
, (6)

are obtained. vF denotes the input amplitude and vµ the
control parameter; the multiplier m is implemented by
means of analog multipliers (according to vo =

vi0 ·vi1
m ).

To map the Hopf system on the circuit, the uncompressed
interval should be identified, and mapped on the non-
saturation regime VCC of the op-amp. We chose this inter-
val as IF = [0+, FC(µ∗)], where µ∗ is a sufficiently negative
value of µ where log[FC] does not substantially increase
anymore, For the proper mapping, we write vz = Azz, vF =

AFf, vµ = Aµµ. From equating (6) with (4), we obtain

ż =
( −Aµµ

mCRµ
+

j
CRω

)
z − A2

z |z|2z

2m2CRγ
− AFf

CRFAz
. (7)

The mapping thus requires to use AF � VCC/FC . We chose
AF = VCC . To obtain a unitary gain, we set Az = AF . Aµ,
finally, could be set arbitrarily, but is naturally chosen as
Aµ = −VCC/µ. In order to treat properly situations where µ
is changing over an interval Iµ, we replace µ by min(Iµ). At
given capacitance C, the resistor values are then calculated
from the equivalence between (4) and (7) to

Rω =
1

Cωch
, Rµ =

−Aµ
mCωch

, Rf =
AF

AzCωch
, Rγ =

A2
z

2m2Cγωch
,

(8)
ωch > 0. φ plays the same role as in linear filters: It re-
lates the response curves to the characteristic frequency,
see Figs. 2,3. Unlike linear filters, which are only depen-
dent upon the normalized input frequency φ, the Hopf am-
plifier response is also influenced by the input amplitude
F. Furthermore, the response can be controlled by adjust-
ing µ. The linear gain, at the characteristic frequency, for
small input signals is preserved by this scaling, as is the
compressive gain with exponent −2/3 for increased input
signal strength.

To support an intuitive understanding of the circuit, we
note that the Hopf equation (4) with nonzero driving can be
interpreted as a nonlinear filter, with a tunable gain control
(“quality factor”) |µ| and an envelope detector |z|2. As the
bandwidth Γ ∼ |µ| for F ≤ FC (and Γ ∼ γ 1

2 F
2
3 for F > FC),

small |µ|-values act as a high Q-factors (sharp resonances).
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Passive part: As is suggested by the response gener-
ated by the Hopf cochlea differential equation, the passive
part can be modeled as a 6th-order Butterworth circuit. For
reasons of hardware availability, the 6th-order Butterworth
equation was separated into three 2th-order low pass filters
(see Fig. 1). The rescaled, centered around unity, section
input frequency φ will then be transformed according to

B6(φ) =
∑6

i=0
1

aiφi = (9)
1

(φ2+0.518φ+1) · 1
(φ2+

√
2φ+1)

· 1
(φ2+1.932φ+1) .

The first filter has a gain in excess of 1 at the characteristic
frequency. Thus, at large input voltages and small control
values, saturation of the op-amps will occur. This problem
can be compensated for by changing the order of the 2th-
order circuits or by constructing a single 6th-order circuit.
We chose the first option. As the characteristic frequency of
the Hopf amplifier is higher than that of the Butterworth fil-
ter and hence the amplification of small signals takes place
earlier, this choice should not even affect the processing of
very small inputs.

The Cochlea: is implemented as a cascade of sections.
Classical feedback and open-loop gain amplifications run
into the problem of getting the phases of the passive and
the active behavior to interact constructively. Therefore,
and since the passive component is described as a signal
transformation (instead of signal propagation), a simplified
feedforward coupling scheme is used for the connection
between the active and the passive components. Not only
does this require less components, its behavior is easier to
assess, as phase and delay information can be ignored. Fol-
lowing these principles, a circuit was designed, translated
into Simulink and built in hardware, see Fig. 1.
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Figure 1: Circuit diagram of a section, consisting of a Hopf
amplifier and two 6th-order Butterworth filters.

If, as an example, the values ωch = 500 [s−1], γ0 =

108, and µ ∈ {−103,−102,−10,−1} are chosen, this leads
to FC(µ) ∈ {3.1623, 0.1, 0.0031623, 0.0001}, respectively.
From the Hopf Eq. (4), it can be inferred that max |µ| =
1000, max |F| = 1, max |z| = 0.00225, which leads to
Aµ = −0.01, AF = 10, Az = 4444.4. Choosing C =
10−6 [F] yields Rω = 2000, Rµ = 10000, RF = 0.00225,
Rγ = 987.63 [Ω]. Using the TL082CP and the AD734AN
chips, this leads to m = 10 in (6-8).

To parametrically describe the design of a generic sec-
tion, thus the detuning between the passive frequency ωs

and the Hopf amplifier frequency φs(i) := ωs(i)/ωch,s(i) <
1, i = 1, . . . , n, where n is the number of sections, is suffi-
cient. This is our first design parameter. The second design
parameter is the relationship between the characteristic fre-
quencies of subsequent section frequencies

Ψ(i) =
ωs(i + 1)
ωs(i)

, i = 1 . . . n − 1. (10)

In the following, we will chose the two parameters inde-
pendent from the section, as Ψ(i) = Ψ, φs(i) = φs,∀i. The
design of a generic cascade element, the section, is now
fully described in terms of these two parameters. The sys-
tem is modeled in Matlab Simulink as an ideal circuit, us-
ing the chosen capacitance and calculated resistance val-
ues. The Hopf amplifier is put “in front” of the passive unit,
because of the feedforward coupling of the active amplifi-
cation [13]. Connecting sections in series, finally, builds up
the cochlear cascade.

5. Measurements

In addition to verifying hardware concepts before going in
print, the Simulink model can be used to investigate the
time evolution of the Hopf amplifier. We report here only
on the steady state circuit response (transient signals add no
particular problems). For this case, regular analysis tech-
niques need to be slightly adapted. Since both the input
and output represent complex values, the signal amplitude
is the absolute value of the complex description. Design
parameters, which lead to a span of one octave for a small
number of sections, are φs = 1.05−1 and Ψ = 0.84.
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Figure 2: Output from one section and a two-section
cochlea. Circles denote measurements, the solid line the
corresponding values from the Simulink model. Additional
sections modify the local structures.

1 and 2-sections cochlea : The degree of match between
Simulink simulations and the actual circuits was checked
at different relevant parameter values and found to be very
good. For the above setting, in Fig. 2 the basilar mem-
brane velocity was measured for varying input frequency
at a fixed place, for different stimulation strengths. In
all aspects, measurements and simulations of the one and

535



two-section circuits correspond very well with the original
model Eq. (3), in particular perfectly reproducing as the
key feature the compressive nonlinearity of the mammalian
cochlea.
Comparison software-hardware-biology: By increasing
the number of the sections, the soft- and hardware mod-
els can be made to ever better approach the behavior of the
mammalian cochlea. For the latter, the basilar membrane
velocity is measured against the input frequency at a fixed
measuring place, for different stimulation strengths. The
comparison of 5 sections soft- and hardware vs. the mam-
malian bioware, is shown in Fig. 3. In the software simu-
lation, a discretization effect induced by the small number
of sections vs. the large frequency span is observed. Gen-
erally, the discrepancies between hardware measurements
and software simulations were found to be below 10% of
the measured signals. The strength of the discretization ef-
fect is a function of the frequency distance between aja-
cent sections (Ψ) and resonance widths of the active am-
plifiers, which are a function of the chosen |µ|-values. The
smaller this size, the more discretization features are ob-
served. Simple calculations imply that an array of ∼ 30
sections will lead to a hearing sensor that is hardly distin-
guishable from the mammalian hearing organ.
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form der Basilarmembran”, Phys. Z., vol. 29, pp. 793–810
(1928).

[3] T. Gold, “The physical basis of the action of the cochlea”,
Proc. R. Soc. Lond. B, vol. 135, pp. 492–498 (1948).

[4] D.T. Kemp, “Stimulated accoustic emission from within
the human auditory system”, J. Acoust. Soc. Am., vol. 64,
pp. 1386–1391 (1978).

[5] W.E. Brownell, C.R. Bader, D. Bertrand, Y. de Ribaupierre,
“Evoked mechanical responses of isolated cochlear outer hair
cells”, Science, vol. 227, pp. 194–196 (1985).

[6] L. Robles, M.A. Ruggero, “Mechanics of the mammalian
cochlea”, Physiol. Rev., vol. 81, pp. 1305–1352 (2001).

[7] P. Martin, A.J. Hudspeth, “Compressive nonlinearity in the
hair bundel’s active response to mechanical stimulations”,
Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 14386–14391
(2001).
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