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Abstract—The antennal hearing organs of the fruit fly
Drosophila melanogaster boost their sensitivity by an ac-
tive mechanical process that, analogous to the cochlear am-
plifier of vertebrates, resides in the motility of mechanosen-
sory cells. This process nonlinearly improves the sensitiv-
ity of hearing and occasionally gives rise to self-sustained
oscillations in the absence of sound. Time series analysis of
self-sustained oscillations now unveils that the underlying
dynamical system is well described by a generalized van-
der-Pol oscillator. From the dynamic equations, the under-
lying active mechanism can explicitly be derived. Accord-
ing to the model, the Drosophila hearing organ is driven by
a regenerative amplifier that displays a Hopf-type nonlin-
earity, emphasizing the functional parallels between insect
and vertebrate ears.

1. Introduction

The cochlear amplifier is a fundamental, generally ac-
cepted concept in cochlear mechanics, having a large im-
pact on our understanding of how hearing works. The con-
cept, first brought forward by Gold in 1948 [1], posits that
an active mechanical process improves the mechanical per-
formance of the ear [2]. Until recently, the study of this
amplificatory process has been restricted to the ears of ver-
tebrates, where the high complexity and the limited acces-
sibility of the auditory system complicate the in situ inves-
tigation of the mechanisms involved. This limitation has
hampered the validation of cochlear models that have been
devised (e.g., [3, 4]). The hearing organs of certain insects
have recently been shown to exhibit signal processing char-
acteristics similar to the mammalian cochlea by using ac-
tive amplification [5, 6, 7]: the ears of these insects are
able to actively amplify incoming stimuli, display a pro-
nounced compressive nonlinearity, exhibit power gain, and
are able to generate self-sustained oscillations in the ab-
sence of sound. In both vertebrates and insects, the mecha-
nism that promotes this amplification resides in the motility
of auditory mechanosensory cells, i.e. vertebrate hair cells
and insect chordotonal neurons. Both types of cells are
developmentally derived by homologous genes and share
similar transduction machineries, pointing to a common

evolutionary origin [8]. In line with such an evolutionary
scenario, it seems possible that also the fundamental mech-
anism of active amplification in the ears of insects and ver-
tebrates is evolutionary conserved [9].

Since insect hearing organs are located on the body
surface (head, thorax, legs etc.), they are accessible to
non-invasive examination. Moreover, because the exter-
nal sound receiver is often directly coupled to the audi-
tory sense cells, insect auditory systems can be expected
to provide profound experimental and theoretical insights
into the in situ mechanics of motile sense cells and their
impact on the mechanical performance of the ear. Such
information is technically relevant: providing natural ex-
amples of refined active sensors, the minuscule ears of in-
sects promise inspiration for the design of nano-scale ar-
tificial analogues. Hardware solutions mimicking signal-
processing characteristics of the mammalian cochlea have
already been devised, the responses of which are hardly
distinguishable from the biological example [10, 11].

In this contribution, we model self-sustained oscillations
of the antennal ear of the fruit fly Drosophila melanogaster.
By using time-series analysis methods, we reconstruct the
generating differential equation and we show that the am-
plificatory process is well-described by a generalized van-
der-Pol equation. The fly’s auditory system is shown to be
driven by a regenerative amplifier, as was proposed by Gold
[1] for the cochlear amplifier of vertebrates.

2. Limit-cycle oscillations

In Drosophila, hearing is mediated by mechanosensory
neurons that directly connect to an external sound receiver
formed by the antenna’s distal part [6]. These neurons ac-
tively modulate the receivers mechanics and, occasionally,
give rise to self-sustained receiver oscillations (SO). SO
occur spontaneously and are reliably induced by thoracic
injection of dimethyl-sulphoxide (DMSO), a local anal-
gesic known to affect insect auditory transduction. The
precise action of DMSO on the auditory neurons remains
unclear. However, as spontaneous and DMSO-induced
SO are both physiologically vulnerable and display simi-
lar temporal patterns, the latter can be used to probe the
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nature of the amplificatory mechanism in the fly’s antennal
ear [5]. As revealed by measurements of the receiver’s vi-
brations, about 20 min after administration of DMSO fully
developed SO are observed (Fig. 1b). They have the shape
of relaxation oscillations, with a characteristic frequency of
about 100 Hz [6]. About 10 min later, the SO start to de-
crease in amplitude (Fig. 1c) and finally converge towards
a sinusoidal form (Fig. 1d). The evoked SO may last up to
1 - 1.5 hours.
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Figure 1: Self-sustained oscillations of the Drosophila
hearing sensor (velocity measurements), (a) 10 min, (b) 20
min, (c) 30 min, (d) 34 min after DMSO injection.

The shape of these oscillations are reminiscent of limit-
cycle oscillations generated by a van-der-Pol type oscilla-
tor,

ẍ − µ(1 − x2)ẋ + x = 0, (1)

where x is identified with the receiver’s vibrational posi-
tion and where the control parameter µ > 0 is slowly de-
creased in order to account for the changes of SO shapes
during time. It is well known that at µ = 0, the van-der-
Pol oscillator undergoes a Hopf bifurcation: For µ > 0,
stable limit cycles emerge that can be interpreted as un-
damping (i.e. amplification). A more detailed examination
of the experimental data reveals a pronounced asymmetry
(see Fig. 1 (b)) by comparing the onsets and extents of the
upward and downward excursions within one period, that
requires a more general model for SO generation than the
standard van-der-Pol system.

In order to capture this asymmetry, our modeling is
based on the generalized van-der-Pol oscillator

ẍ + Pn(x)ẋ + Pm(x) = 0, (2)

where Pn(x) and Pm(x) describe polynomials of order n
and m, respectively. From the point of physics, Pn(x) de-
scribes a nonlinear, and possibly negative, friction, whereas

Pm(x) describes a nonlinear restoring force. Our objective
is to determine the orders n, m and the polynomial coef-
ficients that yield the optimal reproduction of the experi-
mental data. We expect that for a proper model, the poly-
nomial orders n and m are unambiguously determined, and
only the variation of the coefficients will account for the
observed changes in the SO shapes over time.

3. Model construction

From the measurements, we are provided with a time se-
ries of the receiver’s vibration velocities. In order to deter-
mine the optimal model, additional information about the
displacement and the acceleration is required. These are
determined by numerical integration and differentiation, re-
spectively. For both cases, characteristic difficulties must
be overcome. In the case of the receiver position, slow
changes in the mean velocity induce a significant drift in
the computed locations. This drift can be eliminated by
approximating the computed locations by a polynomial in
the least-squares sense and subtracting the polynomial val-
ues from the location values. Using a polynomial of 20th
order, the nonlinear trends are annihilated, including the
linear and the quadratic contributions. Unfortunately, high-
order polynomials induce strong oscillations in the vicinity
of the beginning and end of the time series. For the fur-
ther analysis, these parts of the time series must therefore
be excluded. In the case of the numerical differentiation,
in order to reduce the effects of the noise, the measured
noisy time series must be smoothed. By applying a first
order Savitsky-Golay filter [12], this can be achieved in an
efficient way.

As the basis for our generalized van-der-Pol fit to the
data, we consider polynomials of the form

f (x, ẋ) = −Pn(x)ẋ − Pm(x). (3)

In this notation, the differential equation takes the form

ẍ = f (x, ẋ). (4)

In order to determine the optimal polynomial orders, for
each (n,m) order model the polynomial coefficients that
minimize the squared error

ε2n,m =

N∑

i=1

(ẍ(ti) − f (x(ti), ẋ(ti)))
2 , (5)

are determined, where the time series {ẍ(ti)} were nor-
malized to have unit variance. Since the time series are
non-stationary, the time steps ti at which ẋ(ti) is measured
should be restricted to a quasistationary subset of the entire
time series. The lengths N of these subsets (∼ 4000 data
points) were found to be large enough in order that polyno-
mial fitting can be reliably performed.

It is observed that the error ε2n,m saturates for n = 2 and
m = 5 (Fig. 2). A further increase of {n,m} does not reduce
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Figure 2: Root-mean-squared error εn,m of the model fitting
Eq. (5), showing a precipitous decay and saturation of the
error around the orders n = 2 and m = 5 of the polynomial
approximation.

ε2n,m. The emergence of such a conspicuous saturation point
is a very rare case and indicates that the model structure
(2) faithfully reproduces the auditory data of Drosophila.
It could be argued that the relatively high noise level pre-
vents the error ε2n,m from decreasing any further. In the
absence of noise, the errors might thus gradually decrease
with increasing {n,m}. Fortunately, the rapid decay of εn,m
before saturation is a strong evidence against this view, in-
dicating that our modeling is realistic indeed. Moreover,
noise-cleaned [13] experimental data reveal a basically un-
changed decay behavior, which corroborates the validity of
the obtained optimal polynomial orders.
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Figure 3: (a) Receiver’s vibration velocity observed 20 min
after DMSO injection (fully developed SO). (b) Approxi-
mating time series generated by the model (2), using n = 2
and m = 5.

A comparison between realizations of time series by the
model and the measurements corroborates the validity of
our modeling. For the fully developed SO (after 20 min-
utes, see Fig. 4), the comparison reveals that the measured
velocities are faithfully reproduced. This is further illus-
trated in Fig. ??, where the modelled and the measured data
are compared in the phase plane (x, ẋ), where the positions
x were obtained by numerical integration from the mea-
sured velocities. Similar observations emerge for the time
series recorded 10, 30, and 34 minutes, respectively, after
DMSO injection.
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Figure 4: Phase-space representation of measured (dots)
and modelled (solid line) receiver vibrations (at fully de-
veloped SO).

4. Amplification dynamics

The shapes of the polynomials Pn(x) and Pm(x) reflect
the asymmetry of the observed receiver oscillations, specif-
ically when the SO are fully developed (cf. Fig. 1 (b)). The
asymmetry of Pn(x) and, in particular, Pm(x) (see Fig. 5 (b))
becomes effective at large displacements and may have its
origin in structural-mechanical properties of the antenna.
An enlightening interpretation of the amplification dynam-
ics can be given for the behavior around zero displacement
position x � 0, where Pn(x) attains negative values for
small displacements x (Fig. 5 (a)). Since Pn(x) represents
a nonlinear friction, Pn(x) < 0 implies that energy is in-
jected into the system. This is a characteristic feature of
an active amplification processes. Around x = 0, the non-
linear restoring force Pm(x), together with its first and sec-
ond derivatives, are relatively small. This implies that for
small receiver displacements, virtually no restoring force is
present. By means of the negative friction term, the system
is thus easily driven out to relatively large amplitudes.

In the course of time, i.e. with decreasing DMSO
concentration, the nonlinear contributions to friction and
restoring force decay. In particular, the range where the
friction is negative, gradually decreases and finally van-
ishes, in agreement with the observed reduction in SO am-
plitude (see Fig. 1). When the SO start to disappear, the
restoring force function Pm(x) obtains an approximately
linear characteristic with a very small slope. At the same
time, the friction term remains to be very small. As a con-
sequence, weak stimuli will be sufficient to elicit consid-
erable antennal vibrations. Although the amplifier has now
returned into a stable state, where limit-cycles do not occur,
it remains very sensitive. Only small parameter variations
are necessary in order to render the friction term negative
and to lead to an amplification of incoming vibrations.

Our results may be compared to measurements of active
hair-bundle oscillations of vertebrate hair cells, pointing to
a slight difference in the mechanisms involved. Active hair
bundle oscillations promote active amplification in non-
mammal and, possibly, mammal vertebrates [14, 15, 16].
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Mechanical stimulation experiments performed on isolated
hair bundles have shown that the bundle stiffness may be-
come negative for small bundle displacements [16, 15]. In
this case, bundle stiffness has its origin in the amplification-
promoting ion-channel dynamics. For the Drosophila hear-
ing sensor, our model suggests that amplification emerges
from negative friction; only at intermediate displacements,
regions of negative stiffness are found (Fig. 5b).

Recently, it was proposed that active amplification in
the mammalian hearing system is governed by the generic
Hopf-type differential equation [17]. It was later demon-
strated that a Hopf-type cochlea model is indeed able
to faithfully reproduce measured cochlea responses [4].
Moreover, based on this model, the cochlear processing of
multi-frequency tones is easily explained [18]. Due to the
dominating nature of the Hopf nonlinearity, this model is
compatible with the present van-der-Pol system Eq. (1),
known to also exhibit a Hopf bifurcation at µ = 0. Ac-
tive amplification using Hopf nonlinearities thus appears
to be a general mechanism in biological sensing. Finally,
a comparison with approaches of modeling spontaneous
otoacoustic emissions (SOAE) by means of active nonlin-
ear oscillators can be made. It was recently shown [19]
that in order to generate the correct exponential relaxation
part behavior of SOAE, the simplest van der Pol oscilla-
tor variant (1) is insufficient. To correct this, the damp-
ing coefficient term (1 − x2) was changed into the form
( c

(〈x2〉)m − b), where c, b,m are positive numbers and 〈·〉 de-
notes the average over many cycles of the inherent oscilla-
tions of the system. The fractional term has the effect that
the nonlinear active amplification term (undamping) grows
significantly in the neighborhood of x = 0, whereas linear
damping dominates for larger amplitudes. This yields the
experimentally observed exponential relaxation behavior at
intermediate relaxation time. For the implementation of the
also observed initial saturation regime, an additional (neg-
ative quadratic) term is required. Fig. 5 and a numerical
check shows that these experimental features are already
built into our model.
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Figure 5: (a) Nonlinear friction Pn(x), showing undamp-
ing (Pn(x) < 0, dashed line), (b) nonlinear restoring force
Pm(x), displaying a noticeable asymmetry. Fully developed
SO 20 min after DMSO injection, approximated by poly-
nomials of degrees n = 2 and m = 5.
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