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Abstract—This paper examines the steady state behav-
ior of a class of periodically perturbed mappings. This class
displays a generalized periodicity and is characterized in
the steady-state by an invariant set, or belt, of points of
period-n. The rate of convergence to these belts and the
thickness of the belt is seen to be influenced by the fre-
quency of the perturbation. Furthermore, when the pertur-
bation frequency equals π rad/s, generalized period-n be-
havior, where n is even, reduces to period-n behavior.

1. Introduction

This work examines behavioral aspects of a class of dif-
ferentiable mappings. In [1], [2] and [3] the problem of per-
turbed period-doubling bifurcations has been investigated
with particular emphasis on Josephson junctions. How-
ever, in all cases, many assumptions are made on the ac-
tual system. Furthermore, the authors report conflicting
predictions that are valid only for extremely small values
of the perturbation amplitude (many orders of magnitude
smaller than the perturbation amplitudes considered here).
This work investigates steady state behavior of a class of
periodically perturbed mappings. A member of this class
which formed the motivation for this work is the first-order
Digital Phase-Locked Loop [4] described by the equation

φe(n) = φe(n − 1) + 2πν + αsin[ωn + θ0]
−2πK1(sin(φe(n − 1)) + δ) mod(2π) (1)

where the term αsin[ωn + θ0] is a modulating input and is
the perturbation for this system. A bifurcation diagram
of (1) is shown in Figure 1, where the steady-state phase
error, φe, is found for varying values of K1. It can be seen
that the fixed point of the unperturbed system (α=0) un-
dergoes a period doubling at the point K1=0.333 as shown
by the grey line. If the system (1) has a modulating input,
(α , 0), then the associated attractor of the perturbed sys-
tem is characterized in the steady state by a ’belt’ of points
as shown by the black region of Figure 1. The belt is a con-
tained in the ω-limit set. The unperturbed system is char-
acterized by a fixed point (single grey line) in region 1 of
Figure 1. The perturbed system is characterized by a single
compact belt in the same region. We call this a general-
ized period-1 solution. Similarly, for the period-2 cycle of
the unperturbed system, (region 2), there is a compact and
disconnected belt made up of two connected pieces for the

Figure 1: Bifurcation Diagram of the system (1) with
ν=0.1, ω=0.005, δ=0, α=0 (grey) and α=0.08 (black)

perturbed system. The points on this belt cycle in a certain
way, i.e. starting with an initial point on one of the pieces,
this point jumps from one piece to the next each iteration.
Furthermore, this belt is such that if the size of the perturba-
tion becomes arbitrarily small then the period-2 solution is
recovered. We call this a generalized period-2 solution for
the perturbed system and the associated attractor is denoted
a belt of period-2. Furthermore, for the period-4 cycle of
the unperturbed system, (region 3), there is a generalized
period-4 solution for the perturbed system. In other words,
the belt of the perturbed system has periodicity of the un-
derlying unperturbed system.
As shown in [5], equation (1) is a member of a much larger
class of mappings having the form,

x(n) = Fq(x(n−1)) = F(x(n−1))+q(n−1), q(n−1) ∈ [−α, α]
(2)

where F(x) is differentiable on some interval I. We denote
this class F where,

F = {Fq|q(n − 1) ∈ [−α, α]} (3)

This is a robust class as q can model any perturbation such
as jitter, noise, modulating input etc. However, this paper
will consider some interesting steady state behavior of the
class (3) when restrictions are placed on the perturbation
sequence q(n − 1) of (2).
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The rate at which an interval of points converges to the at-
tracting belt will be seen to depend on the perturbation se-
quence. Moreover, for appropriate choice of perturbation
frequency one can achieve near instant convergence to the
belt of given period. Furthermore, if there exist constraints
on the perturbation sequence then the thickness of a belt
of given period depends on the perturbation frequency. A
special dependency reveals how generalized period-n be-
havior, where n is even, can vanish and be replaced by
period-n behavior. This result is used to clearly illustrate
the strict ordering result of [5], i.e. that belts of period-
n of the perturbed system (2) never lose stability after the
period-n cycles of the associated unperturbed system.

2. Rate of Convergence to Belt

As previously mentioned, the class (3) is a robust class as
the perturbation term, q, can model any perturbation such
as jitter, noise, modulating input etc. For the case of the
modulating input (1), the perturbation sequence is deter-
ministic (unlike the case of noise and jitter) and is set by
the modulating frequency, ω. In Figure 2 the line ’Phase
error - U∗=0’ corresponds to the upper limit of the attract-
ing belt. This Figure shows that under the twice iterated
map of (1) the convergence of the upper bound of a larger
interval to the belt differs for various constraints on the per-
turbation sequence. Only the first iteration is shown in this
analysis. The ’•’ symbol illustrates the case when the per-
turbation sequence switches sign every iteration with the
starting value of the sequence positive. It shows that for
one application of the twice iterated map of (1) the upper
bound of the interval converges to the upper bound of the
belt. The ’×’ symbol represents the case when the perturba-
tion sequence is approximately constant and positive. For
this case it can be seen that after a single iteration the im-
age of the upper bound of the interval is located inside the
belt. In fact, it is located at a point 0.0185 below the upper
bound of the belt. This indicates instant convergence to the
belt. Similarly, the two remaining cases also experience in-
stant convergence. These cases are when the perturbation
sequence is approximately constant and negative (∗) and
when the perturbation sequence switches sign every itera-
tion with the starting value of the sequence negative (+).
The image of the upper bound of the interval lies at a dis-
tance below the upper bound of the belt equal to 0.0244 for
the (*) case and 0.0481 for the (+) case. These results will
be shown to be in good agreement with theoretical analy-
sis. For simplicity, we will look at the twice iterated map
of the following generalized system,

φn+1 = G(φn) = F(φn)+ f (ωn+ θ0) and φ∗ = F(φ∗) (4)

where θn = ωn + θ0, |f (θ)| ≤ α for all θ and f is 2π peri-
odic. This is a special case of (2) where the perturbation
sequence has frequency ω and is N periodic if ω = 2πm/N
for integer m. It will be shown that for suitable choice of ω
the convergence of a larger interval to the belt, where the
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Figure 2: Convergence of upper bound to the belt under
twice iterated map of system (1). ζ=0.025, ν=0.1, K1 =0.3,
δ=0, α=0.02.

larger interval contains the belt, can be maximized. First,
we reintroduce a definition from [5].

Definition 1- A Fixed Interval I∗ of class (3) is a compact
interval which is invariant under the class (3), i.e. I∗ is the
minimal set such that Fq maps I∗ into I∗ for all q ∈ [−α, α].

Let the fixed interval I∗ = [L∗,U∗] and let
I = [L∗ − ζ, U∗ + ζ] be a larger interval where ζ > 0. For
convenience, the convergence of the points L∗−ζ, U∗+ζ to
the points L∗, U∗ under the twice iterated map is examined.

Monotone decreasing case: This is the case when F
is monotone decreasing on I. The first-order DPLL of (1)
is a special case of this. From definition 1, I∗ is invariant
under Fq for all q ∈ [−α, α]. Therefore the image of the
points L∗ and U∗ under the mapping Fq are,

U∗ = F(L∗) + α
L∗ = F(U∗) − α (5)

and |I∗| ≥ 2α, Also, −1 < −µ ≤ DF(φ) < 0, where DF
denotes the Jacobian of F and φ ∈ I∗.
The convergence of the points L∗−ζ, U∗+ζ under the twice
iterated map of (4) (see appendix) is examined for various
conditions on the perturbation sequence. These points are
mapped to some point in a bounding interval as indicated
in the following cases.
(i) f (θn) and f (θn+1) can attain any value in [−α, α], then,

G(G(U∗ + ζ)) ∈ [U∗ − 2α(1 + µ), U∗ + µ2ζ]
G(G(L∗ − ζ)) ∈ [L∗ − µ2ζ, L∗ + 2α(1 + µ)] (6)

This says that if there are no restrictions on the perturbation
sequence then the point U∗ + ζ is mapped to some point
in the interval [U∗ − 2α(1 + µ), U∗ + µ2ζ]. Similarly,
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the point L∗ − ζ is mapped to some point in the interval
[L∗ − µ2ζ, L∗ + 2α(1 + µ)].

The following cases highlight some interesting re-
sults when restrictions are placed on the perturbation
sequence.
(iia) f (θn) ' f (θn+1) and negative, then,

G(G(U∗ + ζ)) ∈ [U∗ − 2α, U∗ − α]
G(G(L∗ − ζ)) ∈ [L∗, L∗ + α(1 + µ)] (7)

The interval [L∗ − ζ, U∗ + ζ] is sent instantly into the fixed
interval under the twice iterated map. The convergence of
U∗ + ζ is confirmed by the ’∗’ symbol in figure 2.
(iib) f (θn) ' f (θn+1) and positive, then,

G(G(U∗ + ζ)) ∈ [U∗ − α, U∗]
G(G(L∗ − ζ)) ∈ [L∗ + α, L∗ + 2α] (8)

The interval [L∗ − ζ, U∗ + ζ] is sent instantly into the fixed
interval under the twice iterated map. The convergence of
U∗ + ζ is confirmed by the ’×’ symbol in figure 2.
(iii) f (θn) and f (θn+1) are opposites of each other, then,
(iiia) f (θn) = α = −f (θn+1),

G(G(U∗ + ζ)) ∈ [U∗ − 2α(1 + µ), U∗ − 2α]
G(G(L∗ − ζ)) ∈ [L∗ − µ2ζ, L∗] (9)

The point U∗ + ζ is mapped instantly into the fixed interval
under the twice iterated map, whereas the point L∗ − ζ may
not as indicated by the µ2ζ term. The convergence of the
term U∗ + ζ into the fixed interval is confirmed by the ’+’
symbol in figure 2.
(iiib) f (θn) = −α = −f (θn+1),

G(G(U∗ + ζ)) ∈ [U∗, U∗ + µ2ζ]
G(G(L∗ − ζ)) ∈ [L∗ + 2α, L∗ + 2α(1 + µ)] (10)

The point L∗ − ζ is mapped instantly into the fixed inter-
val under the twice iterated map, whereas the point U∗ + ζ
may not as indicated by the µ2ζ term. The µ2 dependence
is highlighted in figure 2 by the ’•’ symbol. The numerical
results agree qualitatively and quantitatively with the the-
ory. The analysis shows that cases (iia) and (iib) provide
instant convergence of the upper and lower bound of the
larger interval to the fixed interval under the twice iterated
map of the (4). This is confirmed by the numerical results
seen in figure 2.
The monotone increasing case follows the same procedure
however, due to space restrictions, is not included in this
paper.

3. Effect of ω on Size of Belt of Period-2

In this section, it will be shown that if the perturbation
sequence changes by regular amounts every iteration then
the size of the belt of given period can be seen to vary in

Figure 3: Steady State Phase Error of the system (1) with
ν=0.1, K1=0.42, δ=0, and α=0.02

thickness. As explained in section 2, the modulating fre-
quency, ω, controls the perturbation sequence for the spe-
cial case (1). Figure 3 shows a steady state phase error
diagram of phase error for varying values of modulating
frequency, ω. This is for K1=0.42 which indicates that the
system (1) is operating in the period-2 attractor region (re-
gion 2 of Figure 1). If successive perturbation values are
allowed to attain any value in the range [−α, α] then the
steady state phase error will lie in the range

φn+1 ∈ [(F ◦ F)(φn−1) − α(DF(V ′n−1) + 1),
(F ◦ F)(φn−1) + α(DF(V ′n−1) + 1)] (11)

where V ′n−1 ∈ [F(φn−1), F(φn−1) + un−1] , −α ≤ un−1 ≤ α.
If, however, the perturbation frequency is ω rad/s then the
steady state phase error will lie in the range,

φn+1 ∈ [(F ◦ F)(φn−1) − α(DF(V ′n−1) − 1),
(F ◦ F)(φn−1) + α(DF(V ′n−1) − 1)] (12)

which is a smaller interval than that of (11). This indi-
cates that by appropriate choice of perturbation frequency
the size of the belt can vary in thickness. Figure 3 shows
the effect thatω has on the size of the belt. It can be seen for
ω small that the width of the belt is minimized. However,
as ω increases the width of the belt increases and reaches a
maximum at ω = π/2. As ω is increased further there is a
contraction in the thickness of the belt. The thickness of the
belt experiences a further expansion as ω approaches 3π/2
and contracts again for ω approaching 2π. This expansion
and contraction repeats every 2π rads.

4. Special Case: ω equals π rad/s

Consider system (1). With ω = π rad/s and the system
operating in the generalized period-1 region (region 1
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of Figure 1) then the steady state oscillates between two
points. Where before there was an invariant belt there
are now two points. In the generalized period-2 region of
figure 1, (region 2), it can be shown that if ω = π rad/s then
successive terms, f (θn) and f (θn−1), cancel and the steady
state φe oscillates between two points. Where before there
was a compact belt made up of two disconnected pieces
there are now two points. This is an interesting result
and indicates that when ω equals π rad/s for system (4),
generalized period-n behavior, where n is even, vanishes
and is replaced by period-n behavior. In general, if ω = π
rad/s for system (4), belts of period-n, where n is odd,
reduce to points of period-2n. Furthermore, belts of
period-n, where n is even, reduce to points of period-n.
Figure 4 shows part of the bifurcation diagram of the
system (1) where the phase error is calculated for varying
values of K1. In particular it shows where the upper bound
of the period-2 attractors loses stability in a pitchfork
bifurcation. This region is indicated by the dashed box
section of Figure 1. When ω = π rad/s the belt of period-2
reduces to points of period-2 as indicated by the black line
in Figure 4. It is clear that the point at which the perturbed
system loses stability is to the left of the unperturbed
system (grey line). This observation supports the main
result of [5] which proved that belts of period-n of the
perturbed system (2) never lose stability after the period-n
cycles of the associated unperturbed system.

Conclusions

This paper has looked at some interesting steady state
behavior of the class of perturbed mappings (3). In
particular it was shown that certain behavior is dependent
on the perturbation sequence, qn−1 of (2). Firstly, the rate
at which an interval of points converges to the attracting
belt can be maximised for a certain choice of perturbation
frequency. Secondly, the thickness of a belt of given period
is dependent on the perturbation frequency. A special case
of the perturbed system showed how generalized period-n
behavior, where n is even, can be replaced by period-n
behavior. This result served to illustrate the findings of
[5] that belts of period-n of the perturbed system (2) never
lose stability after the period-n cycles of the associated
unperturbed system.

Appendix

The twice iterated map of (4) in the monotone decreasing
case is given by :

(U∗ + δ)→
U∗ − α + DF(φ̂u)(α + DF(φu)δ + f (θn)) + f (θn+1) (13)

(L∗ − δ)→
L∗ + α − DF(φ̂l)(α + DF(φl)δ − f (θn)) + f (θn+1) (14)

Figure 4: Bifurcation Diagram of the system (1) with
ν=0.1, ω=π, δ=0, α=0 (grey) and α=0.04 (black)

where,

U∗ ≤ φu ≤ U∗ + δ

L∗ ≤ φ̂u ≤ L∗ + α + DF(φu)δ + f (θn)
L∗ − δ ≤ φl ≤ L∗

U∗ − α − DF(φl)δ + f (θn) ≤ φ̂l ≤ U∗ (15)
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