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Abstract—Since the so called entrainment phenomenon
was observed as disturbance in early radio receivers, sev-
eral mathematical models were developed by Möller, van
der Pol and many others, however, detailed understanding
was included in a paper of Andronov and Witt in 1930. At
the same time, first ideas were published to use the entrain-
ment effect in a constructive manner for synchronization
devices. A related concept for the synchronization of sig-
nals was developed in electronics and AFC (automatic fre-
quency control) around 1940 which was denoted as phase–
locked loop (PLL) in the late 1950s. Although many papers
about the analysis of PLLs were published during the last
forty years, no clear relationship between entrainment and
PLL behavior is available. In this paper it is shown that
the describing equations are very different but they are in-
cluded in the same class of nonlinear differential equations
with limit cycles and an excitation. Furthermore it is shown
that both behaviors are essentially the same.

1. Introduction

When first discovered in radio receivers, the phe-
nomenon of pulling and jumping was considered a distur-
bance [1]. First mathematical models were developed by
Moeller [2], van der Pol [4] and Andronov and Witt [5] un-
til in 1935 Rjasin published a detailed description includ-
ing a transient analysis of the driven van der Pol oscillator
[6]. First ideas were proposed using the effect in a con-
structive manner in the same time in television engineering,
e.g. by de Bellescise [7] and Urtel [8]. In 1937 Woodyard
published an application for driven oscillators in frequency
demodulation [9]. When the effect was further utilized in
entrainment circuits by Kaden or Reynauld [10] and the en-
trainment generator by Urtel [8], there was clearly a change
to feedback structures similar to a PLL even though they
were still called entrainment circuits. The first block dia-
grams were published in the early 1950s (e.g. [11] and
[12]) and the name PLL was established.

Since both driven oscillators and PLLs are used in a sim-
ilar manner and have similar functionalities the question
arises if there is a connection between these quite different
structured devices. Their behavior is inasmuch similar that
both are able to lock their phase and frequency to that of an
externally provided signal.

2. Fundamentals of driven oscillators and entrainment

The discussion of driven oscillators is restricted to sec-
ond order oscillators for simplicity reasons, which means
that the oscillator is a dynamical system with two state vari-
ables possessing a limit cycle in the state space. A very
popular equation in the analysis of driven oscillators is the
van der Pol equation, which can be derived by an LC ele-
ment with a parallel nonlinear resistor [5]

ẍ + ε
(
x2 − 1

)
ẋ + x = Γ cos

(
ω f t
)

(1)

which is a special case of a more generalized equation

ẍ + α (x) ẋ + x = u (t) (2)

in which the damping term is a function of the state vari-
ablex and the external forcing is a function in timet. The
variablex consists of a circuit voltage or current. There-
fore, this description level will be called state space from
here on. The approach for solving the van der Pol equation
is coordinate transformation [13]

x (t) = a (t) cos
(
ω f t
)
+ b (t) sin

(
ω f t
)
. (3)

In contrast to the state space, the description in the coordi-
natesa andb is called van der Pol plane. Eq. (3) inserted
in Eq. (1) and neglectingεȧ andεḃ, results in a system of
differential equations [13]
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whereν is detuning,γ the amplitude of the excitation and
r2 = a2 + b2

ν =
(ω2

f − 1)

εω f
, γ =

Γ

εω f
. (5)

The analysis regarding equilibrium points leads to figure 1
in which equilibrium points are displayed for different pa-
rametersγ and ν. It is necessary to distinguish between
weak (γ < 1.089) and strong excitation (γ < 1.089) be-
cause of different bifurcation behaviors which occur at the
transition point from entrainment to the loss of entrain-
ment. In the case of weak excitation there are three equilib-
rium points when entrainment occurs, a stable node, a sad-
dle point and an unstable spiral. At the point of entrainment
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Figure 1: Equilibrium points of the driven van der Pol
equation
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Figure 2: Baseband model of a PLL

loss a stable limit cycle appears via saddle node bifurcation
while at strong excitation Andronov-Hopf bifurcation ap-
pears when the stable spiral switches to an unstable spiral
and a limit cycle [14]. Due to the limit cycle in the van
der Pol plane, outside the entrainment region there is a su-
perimposed frequency in the output oscillation. A detailed
analysis of the van der Pol equation is presented in a paper
by Guckenheimer [15].

Beside the analysis in the van der Pol plane there is a
possibility of describing a driven oscillator in the phase
plane. The analysis by Fack [16] establishes that the phase
difference between the input and oscillator signalϕ varies
between 0 and± π2 depending on circuit parameters. The
first who derived the equation for the phase of a driven os-
cillator was Adler [17]

dϕ
dt
= −B sin(ϕ) + ∆ω0 (6)

whereB is a constant dependent on the amplitudes of the
excitation and the internal oscillation and∆ω0 = ω0 − ω f .
Later Pikovski et.al. [14] obtain the same equation with a
different approach. In contrast to Adler they use a nonlin-
ear model and pertubation theory. In both cases there is an
order reduction of the oscillator model. The internal struc-
ture of the oscillator is neglected and the amplitude of the
excitation signal only appears as a parameter of the model.

3. PLL fundamentals and derivation of a state space
model for the PLL

PLLs are usually described by a block diagram contain-
ing a VCO, a phase detector and a low-pass filter [18]. The
analysis of the baseband PLL is carried out in the phase
space1 by modelling the components individually as is dis-
played in figure 2. This model leads to a description based
on the following integral differential equation [18]

dφ
dt
=

dθ
dt
− KA

t∫
0

f (t − u) sin(φ(u)) du (7)

where f (t) is the pulse response of the filter andK is the
open loop gain. The state variables in this description are
the phase differenceφ and its derivatives whilst the ampli-
tudeA of the external signal plays no other role than being
a parameter. The order of a PLL is determined by the order
of the filter in such a way that the order of the PLL results
in the order of the filter+ 1. In this paper the focus lies on a
second order PLL, because the basic behavior of the PLL is
not determined by the filter. This is true, since the purpose
of using filters of higher order is that the PLL has better
tracking behavior in the case of input disturbances. A first
order PLL has no filter and the pulse response isf (t) = δ(t)
and Eq. (7) becomes [18]

dφ
dt
=

dθ
dt
− KA sin(φ) . (8)

For an input phase proportional to time t,θ = ∆ωt, this
equation is equal to Adlers equation (6). The second or-
der PLL with an imperfect filter can be described by a first
order system [18]

dy
dt
=

(
y2

−
(
cos(y1) + b

AK

)
y2 − a

AK sin(y1) + b
AKω∆

)
(9)

with y =
(

y1

y2

)
=

(
φ
φ̇

)

in which ω∆ is the detuning. The equilibrium pointsysi

(i = 1,2) of this system result in [18]

ys1 =

(
2kπ + arcsin

(
b
aω∆
)

0

)
(10)

ys2 =

(
(2k − 1) π − arcsin

(
b
aω∆
)

0

)
. (11)

Whenω∆ > a
b the equilibrium points disappear and the

PLL is not able to lock. This means that no constant phase
differenceφ exists andφ increases continuously. The be-
havior of the PLL outside the locking area can be compared
to the driven oscillator. The output of the oscillator and the
input signal are 90–degree phase–delayed.

1In the following, the phase space, van der Pol plane and state space
will be referred to as different description levels.
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Figure 3:xres of Urtel’s model

Since the baseband model uses a very simple model for
the oscillator – an integrator, the model cannot reproduce
the behavior of a real PLL in every detail. Shibutani et.al.
[19] extended the model for the oscillator to improve the
modelling of the transient behavior. Here, a state space
model is developed to underline its complex structure. The
VCO is modelled by a van der Pol oscillator in which the
capacitorC is a function of its input voltageξ

C (ξ)
d2y
dτ2
+ ε
(
y2 − 1

) dy
dτ
+

1
L

y = 0 (12)

Even if the filter is realized with a simple RC–element

dξ
dτ
+

1

RĈ
ξ = K̂ · y · u (t) (13)

it seems rather difficult to achieve an approximate solution
for this system of nonlinear differential equations with time
varying coefficients. Interesting enough it is possible to
discuss the dynamical behavior of the phase of the PLL.

4. Relations between the driven oscillator and the PLL

As is demonstrated in the previous sections, it is difficult
to compare driven oscillators and PLLs since even their de-
scription level is different. In case of the driven oscillator
the conventional description level is either the state space
or the van der Pol plane. The baseband PLL is usually de-
scribed in the phase plane even though a state space de-
scription is possible, it is very complex due to the feedback
structure and the VCO. Comparing the state space descrip-
tion of the PLL, Eq. (12) and Eq. (13), with that of the
driven second order oscillator, Eq. (2), it is not possible to
establish a simple connection between these.

In 1938, Urtel [8] introduced a tube circuit modelling
the entrainment phenomenon which clearly has a core that
can be interpreted as a PLL. Beside the PLL core, there is
an additional element that combines the input signal and
the output signal of the VCO by adding them, see figure 5.
This circuit models the behavior of an entrained oscillator
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Figure 4: Simulatedxres of the driven van der Pol oscillator

wherexres represents the state variable of the driven oscil-
lator. Sinceu(t) andy(t) are 90–degree phase–delayed, the
outputxres results in

xres (t) = Ko sin
(
π

2
− ω0t

)
+ A sin

(
ω f t
)

(14)

This explains the varying phase differences of driven oscil-
lators since the superposition of different weighted sin(ωt)
and cos(ωt) result in sin(ωt + ϕ̃). Interpretingu(t) andy(t)
as phasors with the frequencyω f at rest and with

ω0 = ω f +
dϕ
dt

(15)

the amplitude ofxres(t) yields

|xres| =
√

K2
o + A2 + 2AKo sin(ϕ). (16)

The same characteristic was derived by Fack [16] in a
different way. Outside the entrainment region, the phase
ϕ does not result in a constant phase but a continuously
increasing phase. Forϕ increasing in time the resultant
xres is displayed in figure 3 with the approximationϕ ≈
1
2(2t + sin(t)), sinceϕ deviates, due to the dependence of
Eq. (15) andω0 ∼ sin(ϕ), from linearly increasing. Com-
paring it to figure 4 which displaysxres of a simulated van
der Pol oscillator with similar parameters but a different
time scale, it is clear that Eq. (16) describes the envelope
of a driven oscillator. The behavior of Urtel’s model and
the driven van der Pol oscillator is therefore comparable.
The additional adder in Urtel’s model can be interpreted as
an observer of the PLL which transforms the state variables
of the PLL into those of the driven oscillator. This simple
addition explains the shape of the envelope of the driven
oscillator as is shown in these figures.

Regarding the state space models, this means that there
is a function F(y,u) which transforms the state space equa-
tions, Eq. (12) and Eq. (13), into the equation of the driven
oscillator, Eq. (2)

x = F (y, u (t)) . (17)
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Figure 5: Model of the entrainment generator presented by
Urtel

Examining the phase space descriptions this observation is
confirmed, since the phase space equations are the same
for a driven oscillator (Adler’s equation, Eq. (6)) and the
first-order PLL, Eq. (8). In microwave theory it has been
known that the phase space descriptions of the driven os-
cillator and PLL are equal [20]2 even though no connection
between the dynamical models was established.

This suggests that the PLL was developed as a device
that realizes the phase space characteristics of a driven os-
cillator using separate elements to accomplish this. There-
fore the state space models of the PLL and driven oscilla-
tor are very different but with the transformation function
x = F(y, u(t)) their relation can be described.

5. Conclusion

The Adler equation, which is equal to the phase descrip-
tion of the first order PLL, can be derived by pertubation
methods from the state space equations of the driven oscil-
lator [14] while the relation between the PLL and the Adler
equation is established by modelling the PLL. Since a state
space description for a second order PLL was established
in this paper the question arises if it is possible to derive
the Adler equation from the state space description. Since
the baseband PLL is usually described in the phase space,
the relation between the driven oscillator and PLL allows
a better understanding of the PLL and therefore might lead
to an improvement of the modelling of the PLL.
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