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Abstract– If the feedback signals of control systems 
are transmitted over data networks, time-varying delay 
times occur due to the data transport mechanism. This 
delay affects the behavior of closed loop control systems 
and has to be taken into account when designing or 
adjusting the controller. In the paper a simulation method 
for control systems including random delay is proposed. 
The delay is modeled using a queuing mechanism with 
random arrival and service time generators. The complex 
behavior resulting from this kind of delay is analyzed and 
stability conditions are demonstrated. Finally 
consequences for the adjustment of the controllers are 
derived. 

1. Introduction 

Control systems in buildings or factory floors use a 
communication network or a field bus to transmit the 
measurement and control data [5]. Figure 1 demonstrates 
this with an example. The measured data from the sensor 
nodes S are transmitted via the bus to the controller node 
C. After processing these data the controller transmits the 
control variable to the actor node A which accesses the 
plant. The repeated data transfer over the field bus causes 
delays which may degrade the performance of the control 
system or even lead to instability of the system. 
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Figure 1: Field bus feedback control 

As a rule the signal delay is random [3], [4]. This 
necessitates a statistical approach for the behavioral and 
performance analysis of the control system. 

In this paper we propose a system model for the 
analysis of networked control systems. We use standard 
linear models for the plant and the controller and 
introduce a queuing mechanism to model the delay. This 
model at the same time preserves the time sequence of the 
transmitted data. 

In section 2 we introduce the device models used; in 
section 3 typical performance measures are presented. 
Section 4 demonstrates a simulation system for the 
performance analysis of networked control systems, and 
section 5 shows typical analysis results. 

2. System Model 

2.1. Feedback Control Loop 

The model of the basic structure of a single-loop 
feedback control system is depicted in Figure 2. Plant and 
controller are assumed to be continuous-time. A sampler 
samples the values of the process or plant output y. 
Sampling can be periodical or depend on the process 
value itself (Send On Delta). In the latter case it is 
assumed to be random. 
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Figure 2: Model of the basic structure 

The data transmission process over the network is 
modeled by a queuing system (queue and service station). 
The sampled values enter the queue (FIFO memory). 
After a service time interval Tsn the each first element 
leaves the queue. So the delay times are generated (see 
paragraph 2.3). The limiter between the controller and the 
plant considers clipping effects of the real devices. The 
models of the function blocks are described in the sequel. 

 
2.2. Models of Plant and Controller 

For most applications control plants can be modeled by 
simple linear systems. Table 1 shows the transfer 
functions of plant models of I-, PT1- and PT2-type. 
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Table 1: Plant models 
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The parameter T90 denotes the 90% rise time of the 
corresponding step response. The PT2 plant model is 
adjusted for a slight overshoot (1%) of the step response. 

 
For the control the standard P- and PI-types are used. 

The corresponding transfer function is 

 ( ) ( )
( )

I
C P

Y s k
H s k

U s s
= = + , (1) 

where kP and kI are the proportional and the integral 
coefficient respectively. 
 
2.3. Model of the Delay 

Signal delays in data networks are mainly caused by the 
bus access control. The data transmitting units (sensors, 
controllers, routers) are equipped with FIFO memories 
where the data are stored until they are transmitted over 
the bus. This corresponds to a queuing model. The data 
queue up in the FIFO memory until they leave it at 
random time instants. As a rule a signal value passes 
several queues until it reaches its destination. Here we 
assume that the delay process can sufficiently be modeled 
by applying one single queue model. It generates the 
subsequent delay times and assures that the order of the 
transmitted data is preserved. Figure 3 depicts the delay 
mechanism. At the arrival time instants tan the data values 
Dn enter the queue. At any one time the first datum in the 
queue is served which takes a service time Tsn. 
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Figure 3: Delay mechanism 

The arrival time instants tan and the arrival time 
intervals Tan are related by 
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and, similarly for the departure time instants tln and the 
service time intervals Tsn we have 
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The delay time Tdn for the datum Dn is the time 
between the arrival time and the departure time. From 
Figure 3 we get for the departure time the recursive 
relation 
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or 
 ( )1

max ,0
n n n nd s d aT T T T

−
= + − . (5) 

This relation is used to generate the subsequent delay 
times from the random sequences of the arrival and the 
service times. 

 
2.4. Summary of Model Equations 

Here we summarize the model equations assumed for 
the performance analysis. The control plant is described 
by a linear ODE, i.e. in the simplest case (PT1) 
 ( ) ( ) ( )p y t y t u tτ + =& , (6) 
where τp = 0.43T90 (see table 1) is the time constant of the 
plant. The PI-controller is described by 
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( ) ( )( )
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where xR is the state of the controller. The error signal is 
 ( ) ( ) ( )Te t y t w t= − , (8) 
where yT is the sampled and delayed output of the plant, 
given by 

 ( ) ( ) ( )( ) ( )1
0

n n nT a a l
n

y t y t y t s t t
−

∞

=

= − −∑ , (9) 

where a zero-order hold is assumed for the sampled signal 
data. 
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Figure 4: Block scheme of the Control System 

The whole system model has a deterministic 
continuous-time input w and two random input sequences 
Tsn and Tan. The latter are assumed to be independent and 
identically distributed random variables. Forming their 
pdf is used to match the statistical properties of the 
sampling and the delay mechanism. Due to the complex 
nature of the delay mechanism an analytical approach is 
complicated. As a rule analysis tools are used instead [1]. 

3. Performance Criteria 

Performance criteria are used to evaluate the 
controller’s behavior. They are preferably defined with the 
step response of the closed loop system, i.e. set point 
value w is assumed to jump at t = 0 and to remain constant 
afterwards. An ideal control system would force the 
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process output y to track w instantaneously and perfectly 
suppress all disturbances. 
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Figure 5: Step response and performance criteria 

Figure 5 shows the step response of a real control 
system. The most important criteria describing the 
differences to the ideal case are the following: 

 
Steady-State Error: This criterion describes the 

remaining the steady state deviation of the process output 
from the setpoint:  
 e y w∞ ∞= − . (10) 
 

The Overshoot os measures the size of the local 
maximum of the step response in relation to the steady 
state value: 

 maxy y
os

y
∞

∞

−
=  (11) 

It is often given in percents. A good controller has an 
overshoot better than 5 %. 

 
Settling time tS is the time required for the step 

response to permanently remain within a defined tolerance 
range around a reference value yref: 

 ( ) ( )
accuracy

y
yty

tttt
ref

ref
SS ≤

−
>∀= ::min  (12) 

The reference yref can be the setpoint value w or the 
steady state value y∞ of the process output. 

 
Integral Square Error: The deviation of the step 

response from a reference yref is given by ( ) ( ) refytyte −= . 
The integral over the squared error gives the integral 
square error ise 

 ( )( )∫
∞

−=
0

2 dtytyise ref
, (13) 

which for a stable system and for yref = y∞ converges. 
 
All of the criteria mentioned above deliver scalar 

values which depend on the controller parameters. The 
criterion used for a controller optimization has to be 
chosen according to the requirements of the application. 
So in the case of a room heating system a weak overshoot 
remains unnoticed but in the case of a light controller it 
may disturb. 

If as in our case some parameters in the control system 
are random variables then the performance criteria are 
random variables too, and the performance has to be 
evaluated by statistical characteristics (expectation value, 
variance, probability density function) of the used 
performance criterion. 

4. Simulation System 

Based on the equations in paragraph 2.4 a simulation 
tool for control systems with random delay time has been 
developed. The tool simulates the system’s step response 
and calculates performance criteria from chapter 3 and 
their statistic. This allows the study of the behavior of 
delayed feedback controllers and gives assistance when 
designing the controller and optimizing its parameters.  

Figure 6 shows the user interface of the simulation tool. 
The control loop is depicted at the top. Here the type and 
the parameters of the controller and the plant, the limiter 
value can be adjusted. Different probability density 
functions can be chosen for the service time intervals. The 
arrival time intervals are assumed to be constant which 
means periodic sampling at the process output. The 
sampling time interval can also be adjusted. 

 

 

Figure 6: Simulation tool - User interface 

The large graph below the block scheme depicts the 
system’s step response and the queue length in 
dependence of time. The graph and the table at the bottom 
show the performance criteria root of integral square error, 
overshoot and settling time and their statistics for the 
number of repeatedly calculated step responses. The 
histogram window allows displaying the pdf of the service 
time intervals, of the corresponding delay times or of the 
performance criteria. 

5. Analysis Results 

In this section we show some examples of typical 
application cases. All times are normalized to the 
sampling, i.e. arrival time intervals. For the settling time a 
tolerance range of ± 10% around the steady state value is 
assumed. 

519



   

Example 1: 
Plant:    PT1 with τp = 20  
Controller:  PI    with kP = 20 and kI = 0.67  
Service time intervals: uniformly distributed in (0, 1.4),  
i.e. mean value 0.7, standard deviation 0.4. 

Figure 7 shows a typical realisation of the step response 
and the queue length of the system.  

 
Figure 7: Step response and queue length for example 1 

The histogram of the delay times Tdn and the settling 
time tS is depicted in Figure 8. 

   
a) Delay time                     b) Settling time 

Figure 8: Histograms for example 1 

In this example the average service time (0.7) is 
obviously smaller than the sampling time. The delay time 
in principle is distributed over the interval (0, 1.5) which 
is approximately the interval of the service times. The 
queue length remains small (1 or 2). If it is 2 over a longer 
time the performance of the system gets worse. The 
settling time reaches values up to 40 sampling periods. 

 
Example 2: 

Plant:   PT1 with τp = 20  
Controller:  PI    with kP = 20 and kI = 0.67 
Service time intervals: uniformly distributed in (0.4, 1.4), 
i.e. mean value 0.9, standard deviation 0.3. 

 
a) stable realization 

 
b) Realization with oscillation intervals 

Figure 9: Realizations of the step response in example 2 

In this example the average service time (0.9) is close 
to the sampling interval time (1.0). The step response is 
stable in the mean (Figure 9a) but needs a longer time to 
settle. It can contain periods of heavy oscillations caused 
by longer queue lengths and thus longer delay times 
(Figure 9b). 

This also can be seen in the delay time histogram 
(Figure 10a). The settling time reaches values more than 
20 times of that of example 1 (Figure 10b).  

    
a) Delay time                      b) Settling time 

Figure 10: Histograms for example 2 

6. Conclusions 

A model-based simulation method for the performance 
analysis of networked control systems has been presented. 
Whereas the controller and the plant are modeled as 
classical continuous-time systems, the delay mechanism 
caused by the data transfer over the network is represented 
by a queuing system which allows a more realistic 
modeling. An analysis tool has been developed, and 
application examples of behavioral analysis have been 
demonstrated. 
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