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Abstract—This paper studies piecewise constant cir-
cuits with an impulsive switch. Since vector field of the
circuit equation is piecewise constant, the trajectories are
piecewise linear : it is well suited for precise analysis. First,
we consider the autonomous case. The switch is controlled
by a state and the circuits can exhibit chaotic behavior. Sec-
ond, we consider the non-autonomous case. The switch is
controlled by time and the circuits can exhibit rich super
stable periodic behavior. We have confirmed the behavior
in numerical simulations and embedded return maps have a
flat part. Typical phenomena can be confirmed experimen-
tally.

1. Introduction

Simple chaotic circuits are important real physical sys-
tems to investigate interesting nonlinear phenomena [1]-
[3]. Also, the chaotic systems may be developed into en-
gineering applications including pulse-coupled neural net-
works and chaos-based communications [3], [4]. On the
other hand, switched dynamical systems have been studied
for analysis of nonlinear phenomena. The systems have
rich bifurcation phenomena and the typical examples are
power converters [5]. We have selected an impulsive switch
as a key of nonlinear element. The switch can cause inter-
esting phenomena including rich bifurcation phenomena by
external excitation [6].

This paper presents simple piecewise constant (ab.
PWC) circuits consisting of two capacitors, two voltage-
controlled current sources (ab. VCCSs) and an impulsive
switch. The VCCSs have signum characteristics and the
vector field of the system is piecewise constant : it is well
suited for precise analysis [7]-[9]. First, we consider the
autonomous case where the switch is controlled by the ca-
pacitor voltage. The circuits exhibit chaotic and equilib-
rium attractors. We have obtained evidence for chaos in
[8]. Second, we consider the non-autonomous case where
the switch is controlled by a periodic pulse-train input. In
this case, the circuits exhibit various interesting phenom-
ena including rich super stable periodic orbits (ab. SSPOs).
We have confirmed a variety of SSPOs in numerical simu-
lations. The return maps are piecewise linear and have a flat
segment that causes the superstability. Using the map, we
show interesting bifurcation diagram. We have confirmed
typical phenomena in laboratory experiments.

Motivations for studying such circuits include the fol-
lowing. First, the circuit equation has piecewise constant
vector fields and the trajectories are piecewise linear. It is
well suited for theoretical analysis of nonlinear phenom-
ena. Second, the impulsive switch can cause various inter-
esting phenomena and the circuits model is very simple.
Third, the rich SSPOs have appeared various dynamical
systems [10], [11]. The transient time to a SSPO is very
short. That is, the SSPOs relate response speed of the sys-
tem and may be developed into controlled system of the
power converter.
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Figure 1: Piecewise constant circuit model.

2. Basic dynamics in piecewise constant circuits

Fig. 1 shows the PWC circuits model. The circuits con-
sist of two capacitors, two VCCSs and an impulsive switch
S . The VCCSs have signum characteristics:

{
i1 = I1sgn(v1)
i2 = I2sgn(v1 − v2)

sgn(v1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for v1 > 0
0 for v1 = 0
−1 for v1 < 0.

(1)

When the switch is open all the time, the circuit dynamics
is described by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C1
dv1

dt
= I2sgn(v1 − v2),

C2
dv2

dt
= I1sgn(v1),

for S=off. (2)

Since the vector fields of Eq. (2) is piecewise constant,
the trajectories are piecewise linear. Operation of S is de-
fined afterward. Using the following dimensionless vari-
ables and parameters, Eq. (2) is transformed into Eq. (3).

τ = |I2 |
C1 |E| t, x = 1

|E|v1

(
ẋ ≡ dx

dτ

)
, y = 1

a|E|v2,

a = C1 |I1 |
C2 |I2 | , γ1 =

I1
|I1 | , γ2 =

I2
|I2 | .
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Figure 2: Basic dynamics in piecewise constant circuit for
a > 1. (a) (γ1, γ2) = (1, 1), (b) (γ1, γ2) = (−1,−1).

{
ẋ = γ2sgn(x − ay)
ẏ = γ1sgn(x)

for S=off, (3)

where E < 0 is the constant base voltage. Note that
parameters γ1 and γ2 have bipolar value: γ1 ∈ {1,−1},
γ2 ∈ {1,−1}. For simplicity, we assume the following con-
dition.

a > 1. (4)
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Figure 3: Dynamics and typical phenomena of autonomous
PWC circuit for (γ1, γ2) = (1, 1). (a) Time domain, (b)
Phase plane, (c) Chaotic behavior for a = 4.7, p = 5.0.

In this case the vector fields are classified into four
cases corresponding to signs of γ1 and γ2. If (γ1, γ2) =
(1, 1), state x and y can vibrate divergently and the vec-
tor field is unstable rect-spiral as shown in Fig. 2 (a).
If (γ1, γ2) = (−1,−1), x and y convergent and the vector
field is stable rect-spiral as shown in Fig. 2 (b). Hereafter

we focus on two cases. The cases (γ1, γ2) = (1,−1) and
(γ1, γ2) = (−1, 1) are shown in [9].

3. Autonomous piecewise constant circuits

We consider PWC circuits in autonomous case and de-
fine the operation of S : If v1 reaches the threshold VT , S
is closed and v1 is reset to the base E. We assume that
the switching is instantaneous without delay and continu-
ity property of v2 is held. The switching rule is described
by

(v1(t+), v2(t+)) = (E, v2(t)) if v1(t) = VT . (5)

For simplicity, we assume VT > |E|. Using a parameter
p = VT

|E| > 1, Eq. (5) is transformed into Eq. (6).

(x(τ+), y(τ+)) = (−1, y(τ)) if x(τ) = p. (6)

When the vector field is unstable rect-spiral, the trajectory
moves as shown in Figs. 3(a) and (b). The circuit exhibits
chaotic behavior for (γ1, γ2) = (1, 1) as shown in Fig. 3(c).
We have obtained that the trajectories reach the equilibrium
point at origin for (γ1, γ2) = (−1,−1) in [9].
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Figure 4: Dynamics and typical phenomena of non-
autonomous PWC circuit for (γ1, γ2) = (−1,−1). (a)
Time domain, (b) Phase plane, (c) Complicated SSPO for
a = 4.7, d = 4.8, (d) Complicated SSPO for a = 4.7,
d = 5.4, (e) Basic SSPO for a = 4.7, d = 6.0.
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Figure 5: Bifurcation diagram of non-autonomous PWC
circuit for a = 4.7, γ1 = γ2 = −1.

4. Non-autonomous piecewise constant circuits

In the non-autonomous case, the switch is controlled by
periodic impulse-train input U(t) with period T . When a
pulse U(t) arrives, S is closed and v1 is reset to E:

(v1(t+), v2(t+)) = (E, v2(t)) at t = nT, (7)

where n is a nonnegative integer. Using a parameter d =
|I2 |

C1 |E|T , the switching rule is represented by

(x(τ+), y(τ+)) = (−1, y(τ)) at τ = nd. (8)

The switching depends on only time. When (γ1, γ2) =
(1, 1), The circuit exhibits complicated chaotic behavior in
[9].
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Figure 6: Return maps of non-autonomous PWC circuit for
a = 4.7, (γ1, γ2) = (−1,−1). (a) d = 4.8, (b) d = 5.4, (d)
d = 6.0. (b̂) is enlargement of the dotted box in (b). (a) to
(c) correspond to Fig. 4 (c) to (e).
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Figure 7: Simple test circuit in autonomous case and lab-
oratory measurement. I1 = I2 � 0.1mA, C1 � 47nF,
C2 � 10nF (a = 4.7), VT = 0.5V, E = −0.1V (p = 5.0).
The data corresponds to the Fig. 3 (c) .

When (γ1, γ2) = (−1,−1), the trajectory moves as shown
in Fig. 4 (a) and (b). The circuit exhibits various phe-
nomena including the SSPOs as shown in Figs. 4 (c)
to (e). Fig. 5 shows bifurcation diagram for a = 4.7,
(γ1, γ2) = (−1,−1), where yn ≡ y(nd). In numerical simu-
lations, we can confirm that complicated SSPOs appear for
a < d < a+1. In range of d it seems to be chaotic orbit, but
all the orbits are SSPOs. If d > a + 1, the circuit exhibits
basic SSPO.

Here we define one dimensional return map for analy-
sis. In order to derive the map, let LD = {(x, y, τ) | x =
−1, and τ = nd} and a point on LD be represented by its y
coordinate. F : LD −→ LD, yn+1 = F(yn). Fig. 6 shows
typical return maps corresponding to various SSPOs. If
d > a + 1, a flat part of the maps intersects 45 degrees line
and super stable fixed point exists on yn = 0 as shown in
Fig. 6 (c). If a < d < a + 1, however, a flat part of the
maps do not have super stable fixed point and complicated
SSPOs can exist (see Figs. 6 (a) to (b̂) ).

5. Experiments

Figs. 7 and 8 show a simple test circuits and labora-
tory measurements. The VCCSs are realized by opera-
tional transconductance amplifiers (OTAs). In autonomous
case, the impulsive switch is implemented using a com-
parator (COMP), a monstable multivibrator (MM), an ana-
log switch S . When v1 reaches VT , the COMP triggers the
MM to close the S and v1 is reset to the base E.
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Figure 8: Simple test circuit in non-autonomous case and
laboratory measurements. I1 = I2 � 0.12mA, C1 � 47nF,
C2 � 10nF (a = 4.7), E = −0.5V. (a) Complicated SSPO
with T � 1.05ms (d = 5.4). (b) Basic SSPO with T �
1.18ms (d = 6.0). Figs. (a) and (b) correspond to Figs. 4
(d) and (e).

6. Conclusions

We considered piecewise constant circuits with an im-
pulsive switch. The switch depends on state or time. A
basic classification of vector field is given and typical phe-
nomena are shown. Roughly speaking, the phenomena are
classified into the following.

Trajectory Autonomous Non-autonomous
for S =off case case
Unstable Chaos Complicated

rect-spiral phenomena
Stable Equilibrium Rich SSPOs,

rect-spiral point chaos etc

Future problems include detailed analysis of bifurcation
phenomena for SSPOs and consideration of engineering
applications.
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