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Abstract— This paper provides an overview about
a class of recently developed algorithms for the com-
putation, handling and application of Volterra Series
in the analysis of nonlinear circuits and systems. The
idea of the presented methods is based on the rep-
resentation of products of exponential functions by
multi-indexes. It is illustrated how these multi-indexes
enable efficient operations without tedious formula
manipulations for the computation and application
of Volterra Kernels in the behavior description and
analysis of nonlinear dynamical circuits and systems.
An implemtation of a program toolbox framework in
Mathematica and C is presented in brief.

1. Introduction

The behavior analysis of nonlinear dynamical cir-
cuits and systems is an important tool for the devel-
opment and parametrical optimization of information
processing circuits or systems. The success of these
analysis depends on the availability of a suitable be-
havior description. A behavior description represents
the behavior of the system in a mathematical way.
It is parameterized by the system parameters. Ap-
plying mathematical methods and techniques to these
behavior descriptions allows the parametrical analysis
or optimization of the system with regard to specified
behavior characteristics.

Thus, the key for the behavior analysis of the sys-
tem is its behavior description. Provided a sufficient
accuracy, behavior descriptions which approximately
represent the system behavior can be used in order to
simplify and accelerate the analysis.

Many analysis of information processing circuits and
systems consider the input-output behavior of the sys-
tem. A suitable behavior description should allow the
efficient computation of steady state responses of the
system to periodic input signals.

In several publications e.g. [CN79a, CN79b, WS98]

the application of Volterra series in the transform do-
main as a behavior description is suggested. Volterra
series allow an efficient computation of an approxima-
tive steady state response of weakly nonlinear circuits
and systems.

Here, an approach to the computation and handling
of Volterra kernels and series based on multi-indexes
is presented. This approach tries to overcome the te-
dious formula manipulations involved in the compu-
tation and application of Volterra kernels and series.
It is a possible key for algorithms for the automatic
computation and handling of Volterra kernels.

The paper will concentrate on the description of the
multi-index algorithm development for the growing ex-
ponential method (GEM) for nonlinear systems. An
example is used to ilustrate the approach. The exten-
sion of the idea of the algorithm to nonlinear networks
is presented only at a glance.
using

2. Explicite behavior description

Volterra Kernels

When a behavior description of a given structure
such as a circuit netlist or a system diagram is derived
in most cases an systeme of nonlinear ordinary dif-
ferential equations is obtained. ODEs are an implicit
form of an behavior description. Fig. 1 shows a system
diagram of such an implicit behavior description. This
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Figure 1: Implicit behavior description diagram

behavior description is given by the equations

) = fa(t),2(t)
y() = g(=(t),(t)) @)
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Here g¢() is simply g(z(¢t),z(t)) = I(x(t)) with I() be-
ing the identity. If the system of ODEs in (1) is non-
linear, for almost all systems and input signals z the
map ¢ : £ € X — y € ) can not be found in closed
analytical form. Here X is the set of input signals.
Respectively, ) is the set of output signals with an
element y.

Thus, in the practical analysis of nonlinear circuits
and systems the mapping ¢ is computed numerically
for a limited time interval 7" and for a particular set-
ting of system parameters, initial conditions and one
input signal. Such an analysis is time and memory con-
suming and the separation of the transient and steady
state behavior is a complicated task.

For most analysis problems it is advantageous to use
an explicit behavior description. A diagram of such an
explicit behavior description is depicted in Fig. 2.
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Figure 2: A Volterra system in the frequency domain
as an explicit behavior description

In the diagram the behavior description is given in
the frequency domain. Thus, the class of input signals
is limited to periodic signals. Instead of sampled wave-
forms y; = y(¢;),¢ = 0,1,... as in the case of implicit
behavior descriptions, complex amplitudes Y= Yelov
are computed here. The computation involves straight
forward algebraic operations only and thus is very ef-
ficient. Such a behavior description is very well suited
for an wide class of analysis, called nonlinear small
signal analysis.

A possible explicit behavior description as shown is
Fig. 2 is obtained when using Volterra series in the fre-
quency domain. The blocks in Fig. 2 are the Volterra
kernels H, (w1, ...,wy) of order n. These Kernels are
parameterized by the system parameters P and the
frequencies w; of the input signal.

In order to obtain a behavior description of the form
depicted in Fig. 2, the Volterra kernels H,, (w1, . . ., wn)
have to be computed from an implicit behavior de-
scription of the form (1). For this task several meth-
ods have been developed. Such methods are described
for system equations in [Rug81] and for networks in
[WS98] for example.

Common to these methods is the first analysis step.
The general implicit behavior description

f($7$‘7'i.7"'7y7y-7y7"')=0 (2)

has to be transformed into an approximative poly-
nomial form with a finite order about an operation
point. If the operating point is assumed to be known
as & = g,y = Yo the approximative implicit behavior
description is

Pf|z:m0,y:y0 = P¢(x,%,%,...,9,9,§,...) =0. (3)
It is not a subject of this paper how the polynomial
form (3) is computed from (2). However, the same
computation step is involved in the linear small signal
analysis. There (3) is truncated after the first order
terms of the polynomial series. Thus at least the oper-
ating point computation and the computation of the
first order terms in the Volterra kernel algorithm is
available.

The multi-index algorithm has been developed for
two Volterra kernel computation methods, for the
Growing Exponential Method (GEM) [Rug81] and for
the Volterra Nodal Voltage Analysis (VNVA) [WS98].

The basic idea of the multi-index algorithms arises
form a closer look at the GEM. The method is based on
ansatzes x4 and y4 for the input and output signals.

za(t) = eMiyert 4. gt = Z emi AL
mN,1
ya(t) = GmivemivAt + . _Gm?,e(m?’A)t
(4)
with A = (A1,...,An). In (4) m} are multi-indexes

of the multi-index set m?. The elements of this set
are

N
——N—
mVk = (mMF L omNR =@1,...,1,0,...,0 (5)

k

with £k = 1,2,..., N and all their possible permuta-
tions. For example, the m? is the set

m? = {(1’070)’(071’0)7(07071)7(17170)7 6
(1,0,1),(0,1,1),(1,1,1)} (6)

The ansatzes (4) replace z — 4 and y — y4 in (3).
The equation is expanded and solved for the G,,~.» of
(4) according to (5) by means of a comparison of co-
efficients of the exponential functions em AL, Thus,
in order to find G~ all summands containing the
exponential em" "At are collected. The resulting equa-
tions are solved for the G,,~,» which are proportional
to the Volterra kernels Hy(wi,...,wy) where the re-
placements \; — w; were applied.

The straight forward use of this method results in
tedious formula manipulations with a huge amount of
terms. Since many of these generated terms do not
contribute to G,,~ ., the computational effort is un-
necessarily high.
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When the ansatzes are replaced into (3) and the
equation is expanded terms of the form

Hm.Hy — P...emgv’lAt.emﬁAt... (7)
L M

are obtained, where P is the parameter to the corre-
sponding product. Equation (7) can be rewritten as:

HL.'L'- HMy - Pe(...+m;v>1At+mﬁAt+.._) _
Pe("""mfv’l-‘rmﬁ.l,_...)[\t (8)

As stated above, the comparison of coefficients is per-
formed for coefficients at the exponential em " F AL,
Thus, for the selection of the needed terms it is suffi-
cient to check if the condition

N’k;...+m;\r’l+m%+... (9)

m
is true for the considered sum of multi-indexes --- +
mfv’l +mN +---. If (9) is true the term contributes to
G,,,~.+ and therefore to Hg(...). These multi-indexes
are used for the construction of terms for the determin-
ing equation of G,,~,x. All other terms do not need
to be constructed.

The above approach allows use the multi-index sets
y — mY and z — m®'! instead of the ansatzes (4) in
the calculation. Only in the last stage of the calcula-
tion, the equation to be solved is constructed from the
remaining L + M-tuples of multi-indexes.

In order to simplify the calculations further, in the
beginning of the algorithm structure and parameters
P of (3) are separated according to:

Pf(m,j':,j7---7y7:1‘/7g./.7---7p)

=(z,z,%,...

where TI(...) is a vector of all products of the input
and output signals and their time derivatives. P(K,p)
is the vector of constants K and system parameters p
belonging to the products in II(...).

In the next step of the algorithm the multi-index sets
m, =m!" and m, = m™! will be constructed where
N is the order of the Volterra kernel to be computed.

Next all products of II(...) with more than N fac-
tors are deleted from II(...), because (9) can not be
satisfied if more than N multi-indexes are added.

The remaining products are replaced by Cartesian
products of multi-index sets according to:

T-T- yy:}/rn/‘z X My X ...myxmy X e
L M

(11)

In the place of every product in II(...) is now a set

of L + M-tuples of multi-indexes. It should be noted

that the replacement is done regardless whether the

replaced factor is a time derivative or not.

In the next step all L + M-tuples of multi-indexes
undergo the test (9). If (9) is true the L + M-tuple
remains in the set, otherwise it is deleted from the list.

From all remaining L + M-tuples multi-indexes in
the components of I1(. . .) products will be constructed.
The factors are constructed according to:

N {m*,l)\‘f+-- + ma v A% if m, = z@
: (Mt A1 + - + M NAN) G, if M = y@

(12)
In (12) the superscript (d) denotes the order of the
time derivative of the corresponding factor. The re-
sulting products within each component of II(...) are
added and (10) is applied with the replaced II(...) re-
sulting in the equation to be solved for G,,~,x. The
solution of G,,~« contains lower order G,,~. with
k' < k. These G,,~. are obtained with same algo-
rithm.

In [Bau04] the algorithm is described in detail. Ad-
ditionally the algorithm is extended there in order
to circumvent the symbolic solution for G,,~.x. In
the extended algorithm numerator and denominator
of G~ are constructed directly from II(...).

2.1. Example

In order to illustrate the algorithm the Volterra ker-
nels of order 1 and 2 are computed for a simple system
with quadratic nonlinearity:

a1z — a1y + asx® — 2a0xy +axy? —Cy=0 (13)
The decomposition according to (10) yields:
I = (z,9273y,yy,9) (14)
P(K,p) = (a1,—a1,a2,—2a2,a2,—C)
The constructed sets of multi-indexes are:
my = {(170)7(07 1)7(171)}

Replacing the factors in II of (14) with (15) according
to (11) yields the following vector of multi-indexes and
pairs of multi-indexes:

II = (Mg, My, My X Mg, My X Ty, My X My, My )
= {@,0}{0, )} {{(1,0} {00, D}, {1, 1D}},
(1,0),(0,1)} x {(1,0), (0,1)}},

(1,0), (0,1)} x {(0,1),(1,0),(1,1)}},
(1,0),(0,1),(1,1)} x {(0,1),(1,0), (1,1)}},
{{(1,0),(0,1),(1,1)})

i
i
{

(16)
In (16) the Cartesian products are not expanded in
order to retain the readability. The expansion yields
4 pairs of multi-indexes in the row standing for x - z,
6 pairs in the row standing for z - y and 9 pairs in the
row standing for y - y.
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Since G1¢ and Gg; are needed in the computation of
G11, the selection of single and pairs of multi-indexes
according to (9) is done three times, for (1,0), (0,1)
and (1,1). From these computation steps

o = ({({(1,0)}}, {1, 03}, {1 {1 {3 {1, 0)3})
n®' = ({{(0, D3}, {{(0, DI}, {1 {3 3 H{©O, 1))
ot = ({}1{{(171)}}7{{(]-)0)7(0; 1)}){(071)7(170)}}a

{{(1,0),(0,1)},{(0,1),(1,0)}},
{{(1,0),(071)}7{(0,1)7(1,0)}},{{(1,1)}})( :
17
is obtained. The initial number of 27 single and pairs
of multi-indexes in (17) has been reduced to 8§ in II':!
of (18). From (18) the equations to be solved for Gy,
Go1 and Gy, are constructed by applying (12), adding
the terms in the sets and performing the scalar product
(10). The results are:

Glo Iooar — a1G10 — C)\1G10 =0
Go1: a1 —a1Gor —CA2Gor =0
(18)
Gi1: —a1Gi1 — C(A1 + A2)G11 + 2a2
—2a2G10 — 2a2Go1 + 2a2G10Go1 =0
The solutions of the above equations are
_ ai _ ai
Gro = a1 +CA’ Gor a1 + Chz
Gy = 2a2 — 2a2Go1 — 2a2G1o + 2a2G10Go1 (19)
11 =

a1+ C(A + A2)

Using Hy = Giy..1/N! and replacing Gg; and Gqg
in (19) yields the desired 2nd order Volterra Kernel
H, = H,(w1,w2) of the system (13):

—a2C2w1w2

(a1 + jwiC)(a1 + jwaC)(ay + j (w1 + w2)C)
(20)

ﬂzz

2.2. Multi-index Algorithm for VNVA

The multi-index algorithm for the Volterra nodal
voltage analysis, described for instance in [WS98§] is
carried through in a very similar way. In this method
linear systems of equations of the form

K'Y s1+...+8,p)-H,(s1,-.. -y 8n)
(21)
are constructed and solved in order to obtain the nth
order Volterra kernels H,, ,,(s1,...,8,) of the nodal
voltages m. K1(s; + ...+ s,,p) is the conductance
matrix of the nodal voltage analysis of the linearized
part of the circuit in the transform domain, with the
parameters p of the circuit elements. It is structurally
unchanged in the algorithm but its parameterization
by s1+...+s, changes with the order n of the Volterra
kernels to be computed.
The structure of the right hand side of (21),
I5(s1,--.,5n), depends on the polynomial nonlineari-

ties of the circuit. I’; is decomposed in the same way

7871.) :I%(Sla"

given in (10). The nodal voltages v, in the products
in the resulting vectors II" are replaced by the lower
order Volterra kernels H_,, ,,, of the nodal voltage vy,.
Only products, where every sy, ..., s, appears exactly
once as a parameter of the lower order Volterra kernels
H_,, ,, contribute to the computation of H,,.

Thus, the problem of constructing It (s1,...,sy) is
very similar to the construction of the equations for
G~ in the GEM. It can be efficiently solved with-
out tedious formula manipulations and generation of
unnecessary terms by applying multi-index computa-

tions here.

3. Conclusions

A class of multi-index algorithms for the efficient
computation and application of Volterra kernels for
circuits and systems has been developed. The al-
gorithms were implemented in a demonstration pro-
gram system called PANAMA. PANAMA combines
C-routines for the communication and the simulation
and MATHEMATICA-packages for the computations of
the Volterra kernels using the described multi-index al-
gorithms. Details of described algorithms can be found
in [Bau04]. The presented ideas could be the key to
a very efficient and reliable toolbox for the nonlinear
small signal analysis of weakly nonlinear circuits and
systems based on Volterra series. Professional pro-
gramming would even allow to implement the algo-
rithms without using computer algebra such as MATH-
EMATICA.

References

[Bau04] Andreas Bauer. Analysis algorithms for non-
linear circuits and systems based on Volterra
series (in german). PhD thesis, TU Dresden,
2004.

[CNT9a] L.O. Chua and C.Y. Ng. Frequency domain
analysis of nonlinear systems: formulation of
transfer functions. FElectronic Circuits and
Systems, 3(6), November 1979.

[CN79b] L.O. Chua and C.Y. Ng. Frequency domain
analysis of nonlinear systems: general theory.
Electronic Circuits and Systems, 3(4), July

1979.

[Rug81] Wilson J. Rugh. Nonlinear System Theory,
The Volterra/Wiener Approach. The Johns
Hopkins University Press, 1981.

[WS98] Piet Wambacq and Willy Sansen. Distor-

tion Analysis of Analog Integrated Circuits.
Kluwer Academic Publishers, 1998.

512



