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Abstract—In this paper, we propose an interactive de-
formation and representation of 3D surfaces. The surfaces
are supposed to be defined by linear Lie algebra, which can
describe shape from their own invariants. Then the Free-
form deformation (FFD) is used for easy manipulation. By
extraction of modified invariants from the deformed sur-
face, it can be easily represented by computer graphics.
The proposed method assists designers in getting inspira-
tion.

1. INTRODUCTION

Since virtual reality (VR) technology has been assisting
designers more and more, they have begun to use the tech-
nology even at initial process of shape design, which is re-
quired not to disturb their inspiration. For example, the
CAVE system [1], a major VR equipment, shows shapes
stereoscopically in its virtual world so that they can ma-
nipulate the virtual shapes floating in space. Such stereo-
scopic representation and manipulation needs big compu-
tation power. Therefore efficient combination between rep-
resentation and manipulation should be developed as well
as each efficient technology.

Some of authors has proposed a surface model and its
representation, which is defined based on the Lie algebra
[2][3][4]. It is noted that characteristics of a shape of sur-
face, defined by the Lie algebra model, are represented by
a few parameters called as “invariants.” As a result, a cer-
tain of complicated and smooth objects can be defined by
a set of the invariants. Since both of extraction from real
objects and representation by computer graphics have been
being studied, it is expected to connect virtual world with
real world.

However, the model has a disadvantage that exact repre-
sentation of a surface may require huge computational cost
because of complicated and large calculation of many inte-
gral calculus curves on the surface. In such case, meshes
of triangular patches usually substitutes for the original
surface. Adaptive and efficient generation of meshes has
been proposed in order not to generate meshes redundantly
[5][6][7]. Therefore, efficient manipulation should be de-
veloped for the previously proposed surface model.

In this paper, we propose a visually interactive deforma-

tion of surfaces, which are defined by the surface model
based on the linear Lie algebra. In the proposed method,
invariants and some initial parameters are extracted from
meshes deformed by the free-form deformation (FFD)
[8]. Since the proposed method works rapidly, it does
not harm designers’ interactivity. Furthermore, since the
method connects “’invariant-base” information on shape be-
fore/after the deformation, we can easily deform surfaces
repeatedly. The advantage is also benefit of telecollabora-
tion in design process.

2. EXTRACTION OF INVARIANTS OF
DEFORMED SURFACE

Lie group is a C* class differentiable manifold with nice
properties, which is a one-to-one correspondence between
Lie groups and their Lie algebra, or between the global
structure and the local information of their normal/tangent
vector fields. The vector field L is represented as follows:
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A normal vector v of a point x on a surface given by
linear Lie algebra is defined as follows:
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where A is a representation matrix, which A is obtained
from sets of position and normal vector. The proposed
method calculates a normal vector of a vertex n as an aver-
age of normal vectors on adjoining patches (see Fig.1).
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Figure 1: Normal vector of a vertex

In order to obtain the matrix A more quickly, it is efficient
to limit vertices to inside a control area of FFD. Four sets
of position and normal vector on a local area are necessary
to calculation of A. More sets we can use, more exact result
can be calculated. In the proposed method, more than four
sets are used for the least-squares method. Additionally, a
set of invariant A;, A, A3 and the Euler angles 6, ¢, ¢ are
obtained from the representation matrix A by the singular
value decomposition.

3. REPRESENTATION OF SURFACE

An initial point of calculation on a surface plays an im-
portant role in determination of size of the surface, while
a set of invariant determines its shape. Therefore a set of
invariants and an initial point xo must be kept for represen-
tation. Then a series of points along an integral curve on
the surface is generated by the followings:

Xis1 = X + Atw;, (3)

where w; is a tangent vector at x; and At is assumed small
enough (see Fig.2). A set of meshes is generated by a set
of points, calculated by Eq.(2) repeatedly.

Figure 2: Generation of neighbor point

4. ALGORITHM

Here we show an outline of the porposed method:

Stepl: Calculate the representation matrix from invari-
ants.

Step2: Obtain the normal vector of a vertex by subsutitut-
ing initial point to Eq.(2).

Step3: Generate a set of point by Eq.(3), and generate a
set of meshe.

Step4: Deform the surface.

StepS: Calculate the average of normal vectors from ad-
joining meshes.

Step6: Take more than four positions and normal vectors,
and normlize them.

Step7: Calculate the representation matrix from the sets
by the least squeres method.

Step8: Obtain the invariant from representation matrix by
the singular value decomposition.

From the above, invariants of deformed surfaces defined
by Lie algebra can be extracted. Additionaly, the surface
can be deformed repeatedly.

S. SIMULATION

We here show results by the proposed method. All sim-
ulation were done under the Table 1. Additionally, we used
OpenGL for visualization. Table 2 shows the data (invari-
ants and initial point).

Figure 3 is original shape. Figure 4 is represented from
invariants of original shape. Figures 5 and 6 shows expan-
sion and reduction of the original shape, respectively. Fig-
ures 7, 9 and 11 shows expansion to x, y, z axis direction
by using FFD method. Figures 8, 10 and 12 shows repre-
sented shapes from invariants. The shape in Fig.3 consists
of 10200 vertices. In this paper, a size of FFD control area
covers target shape, thus invariants are obtained from all
vertex of the surface. Since deformation of Figs 7, 9 and
11 takes 0.3 second, while interactive deformation is avail-
able.

Although invariants in Fig.4 differs from ones in Fig.3,
it seems no difference between shapes in Figures 3 and 4.
Figures 5 and 6 show that when the size of shape changes
and also the value of initial point changes. Additionally,
in Figures 8, 10 and 12, invariants and initial point are not
same. In particular, we can see relationship of x, y, z axis
with 41, 42, 43. Thus shape expands to direction small value
of A.

Invariants changes according to target shape, but to pre-
dict quantity of the change is difficult. In other words, we
can deform the shape by changing the invariants, but it is
difficult to guess a shape, from numerical value. Therefore
when a user obtains arbitrary shape by deformation, it is ef-
fective to obtain invariants of the surface after deformation
1t.

Table 1: spec

oS Microsoft Windows XP
CPU Pentium4 CPU 2.60GHz
Memory 512MB RAM
Video Bord | NVIDIA GeForece FX5200
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Table 2: Invariants and Initial Point

Invariants Initial Point
(A1, A2, 43,60, ¢, 4) (x,y,2)
Fig.3 1.0,1.0,1.0,0.0,0.0,0.0 | 300.0,600.0,100.0
Fig.4 1.0,1.0,1.0,0.0,0.0,0.1 | 300.0,600.0,100.0
Fig.5 1.0,1.0,1.0,0.0,0.8,-0.8 | 395.7,779.8,132.5
Fig.6 1.0,1.0,1.0,0.0,-1.1,1.1 | 204.3,420.2,67.5
Fig.8 1.0,2.0,2.0,0.0,-1.6,1.6 | 443.6,600.0,100.0
Fig.10 | 1.0,0.5,1.0,0.0,-1.0,1.0 | 300.0,869.7,100.0
Fig.12 | 1.0,1.0,0.5,0.0,0.2,-0.2 | 300.0,600.0,148.7

6. CONCLUSION

In this paper, we have proposed a visual interactive de-
formation of surfaces defined by linear Lie algebra and ex-
traction of invariants.

The proposed method enables to obtain parameters, that
determine uniformally deformed shape, easily. While our
simulation focused on expansion in axis direction, the
method is applicable to more complicated deformation.
Subdivision technique may be necessary for such case. Ad-
ditionaly, in order to reduce computational cost, we must
select less and appropriate vertex at the calculation of rep-
resentation matrix. Additionaly, implementation to a VR
system will be discussed.
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Figure 3: original shape

Figure 4: represented original shape
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Figure 5: represented shape (expansion) Figure 6: represented shape (reduction)

Figure 7: original shape (x_axis) Figure 8: represented shape (x_axis)

Figure 9: original shape (y_axis) Figure 10: represented shape (y_axis)

Figure 11: original shape (z_axis) Figure 12: represented shape (z_axis)
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