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Abstract—In this paper, we show a Reeb-graph of topo-
logical invariants of images in a scale-space. Different from
well-known scale-space trees of salient or critical points
based on catastrophe or singularity theory, used in image
retrieving/ processing and pattern recognition, we use topo-
logically stable blobs or primary sketchs with nonzero life-
times in scale and nonzero areas at each scale. The con-
tinuum of such blobs as a 3D manifold is featured by tree
of topological invariants called Reeb graph. We show that
this Reeb-graph representation is more robust against de-
formation attacks and perturbation such as numerical er-
rors than traditional scale-space trees. A fast matching al-
gorithm for the graph is also presented. This scale-space
Reeb-graph can be applied to passive watermark, copyright
tracing/monitoring and protection.

1. Introduction

Copyright protection of digital contents over internet is
an important yet difficult task. To currently used water-
marking, it seems that various deformation attacks are in-
evitable and hard to defense. These attacks include geomet-
ric such as Euclidean and Affine transforms or other non-
linear deformations. Other image processing such as com-
pression, filtering, gray scaling or histogram transforms or
other operations could also significantly reduce detectabil-
ity of watermarks. On the other hand, higher detectability
by stronger embedding always means quality degradation
of contents.

It is for these reasons that recently, “passive watermark-
ing” techniques under names of “image hashing”, “soft au-
thentation* etc have been observed[12],[13]. These meth-
ods, instead of embedding foreign information into con-
tents, try to identify illegal copies of the original contents
using their intrinsic features. Advantages of this method
include firstly no quality deterioration of the contents, and
secondly the intrinsic features of contents will not by easily
erased as the presently used watermarks.

Until now most active or passive watermark methods
have been reported based on local features which are de-
fined by e.g. wavelet transforms of GOP, or meshes. How-
ever, it is more desirable to use global features in order to
resist deformation attacks containing a shift farther than the

size of the image blocks or GOPs, since the shift distance
of an attack is usually hard to predict.

The scale space is well known as a powerful tool in im-
age analysis and pattern recognition. Especially, it is used
to reveal the “deep structure” of an image, by considering
all level of scales simultaneously. It is in fact, natural to re-
gard the 1-parameter continuum of the scale- space images
as a topological object and extract its invariants. However,
it seemed that among researches until now, only the linear
scale space filtering method was able to extract the topol-
ogy of this aggregation or stacks of the image in different
levels of scale, which was a straightforward application of
the singularity theory on bifurcation trajectories of the non-
Morsian critical points. These properties are not general
enough and basically structurally unstable.

On the other hand, a tree structure especially a scale-
space tree which represents the image in a descending or-
der of resolution or scale can be convenient in searching,
e.g. in a large database. The scale-space trees are often
built by nonlinear filters such as sieve methods[6][7] or
critical points filter [8] [9]. As shown later, these scale-
space trees unfortunately may not suitable to copyright
tracing/monitoring. Another problem is that most of them
use salient points as features, which is also topologically
instable. In fact, many researches based their methods on
edge detection, segmentation or oject recognition. Such
discontinous and not well-defined operations are obviously
not desirable in copyright tracing.

In this paper, we will address ourselves to a new scale-
space tree called scale-space Reeb-graph. We will first re-
view existing approaches on scale-space trees, then discuss
design strategy of a good scale-space tree fro copyright
tracing. The scale-space Reeb-graph is defined by specify-
ing scale filters, blobs and tree structure. We show that this
new scale-space tree are robust against deformation and
noise. Finally an algorithm for fast matching of the scale-
space Reeb-graph is presented. Simulation is also provided
to examine the performance of the proposed method under
deformation attacks.
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2. Existing approaches of scale-space or multiresolu-
tion trees

Scale-space trees or multiresolution trees can be divided
into the following categories.

(1) Linear (e.g. Gaussian) filtering tree

Consisted basically of trajectories of critical points of an
image or certain feature of the image when the scale in-
creased. It seemed this is the only example of “scale pro-
vides topology”, which reflects merely a limited property
of the scale space. Besides, the properties of non-Morsian
critical points are structually unstable or topologically un-
stable, which means they are not robust again small pertu-
bations.

Besides, for 1D signals, even it is proved for topological
events in a discrete scale determine topology in the con-
tinuous scale at least in principle, but robusty is unknown.
For 2 or higher dimensions, both robusty and discretization
problems are not yet solved[5].

(2) Nonlinear filtering

Since linear scale-space filtering could blur edges or
salient points in the original image, nonlinear filters are
used to build a multiresolution or scale-space tree. (i) Sieve
method [6][7] uses morphological filters such that it can
preserve edges and could be robust against impulse noises.
(i) Critical point filters[8][9] preserve both positions and
intensities of critical points in the original image. They are
also based on morphological operations.

These nonlinear scale-space trees could be noise sensi-
tive due to discontinous operations of the morphology fil-
ters. Since such a discontinous operation does not preserve
topology, one can not guarantee uniqueness of the tree for
an image under perturbation or attacks.

In summary, scale-space trees or multiresolution trees
are mostly based on features of salient points , which are
not robust under pertubation and deformation attack.

Besides, in traditional image processing, pattern recog-
nition and image retrieving, performance under noisy en-
vironment is always a major concern. Especially, robusty
against the impluse noise possesses a larger priority than
smooth e.g. Gaussian noise. Target images are usually as-
sumed to be exactly the same as the query image, and there
is no assumption of any kind of deformations.

In copyright tracing or monitoring, noise is no longer a
major issue but deformation is of the most important. In
fact, one’s main concern is about the misusage of contents
in the same quality but some different forms.

These differences make the strategy for copyright tracing
quite different from those in image retrieving.

3. A scale-space Reeb-graph

A desirable scale space tree for copyright tracing or mon-
itoring should have the following features:
1. Robusty against deformation, e.g., the tree should

contains no geometric information such as positions or ori-
entations but topological invariants only.

2. Robusty against noise/error in implementation and
variety of extraction methods.

3. Multilevel representation of the details at different
resolutions. Minor deformation or noise/pertubation only
affects the matching at low resolution levels.

4. Effiency or can be extracted easily and quickly.

Bellow, we show our strategy to build a scale-space
Reeb-graph.

1. Scaling filters

It is clear that a continous operator either a linear or non-
linear filter is desirable in order to preserve topological in-
variants. In this paper, we use the simplest Gaussian scale
linear filtering. Another reason to use Gaussian filtering
is that it could be implemented by several fast algorithms
[14],[15]. This could shorten the time for online extraction
of the tree or for application in a large database.

2. Blobs

The blob or primary sketch in the scale space is also
an important issue. Instead of structually unstable salient
points, we use topologically robust features as blobs which
keep appear in a scale-interval of a certain length and also
has enough area at each scale-level. i.e. This means these
features possess large enough 3D volume in scale-space.

In this paper, we use the blobs as the possitive areas of
Gaussian curvatures of tristimulus.
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Figure 1: Blobs with nonzero areas

3. Reeb graph

The stacks of all blobs at every scale-level or the 3D con-
tinuum in the scale space we have obtained above can be
regarded as a topological manifold. One way to describe
such a manifold is Morse theory and can be efficiently rep-
resented by Reeb graph. [11].A Reeb graph is derived
by contracting all connected components of level sets of a
Morse function on a smooth manifold into a point. On these
graphes, each vertex corresponds to a critical point and in-
formation of its index is also labeled on the vertex( fig.2).

We define our scale-space tree as a scale-space Reeb-
graph.
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Figure 2: Reeb Graph

3.1. Construction of scale-space Reeb-graph

In fact, we will never extract the nodes in the original
Reeb-graph. Since we wish to avoid topologoical insta-
bility in this extraction, only edges will be detected and
recorded. According to Morse theory, this information
alone will still be enough to determine the topology of the
manifold. Using blobs chosen before, we can keep disgard-
ing topologically instable features which could be affected
by deformation, noise and other pertubation.

We actually also use a weighted tree, i.e. each edge is
labeled with feature information such as the areas of blobs
and moments of the areas. This information will be used in
fast matching of these graphs.

4. Matching Algorithm

4.1. Fast matching of nodes

In order to avoid the exhaustive matching of all combi-
nations of nodes at the same depth of the tree, the nodes are
firstly matched using the informaiton of blobs correspond-
ing to the nodes such as areas and means m, quadratic mo-
ments (¥1, ¥,,---, ¥; ) etc.

i motm
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r -

(p+q+2)2.

Representing a node as a point in the feature space with co-
ordinates (m, ¥;, ¥>,---, ¥7) (fig.3). The two nodes r;, r;.
matches if they are the nearest pair.

Matching pair

Figure 3: Matching of nodes

Remark: In order to find an embedded image, we record
also matching between any subsets of the whole nodes.

4.2. Matching of whole Reeb graph

We define a similarity o(R,R’) between two Reeb-
graphes R, R’ using only local topology around nodes. It is
described by the subgraph of its neighborhood using only
the number of edges. This is a variation of the method in
[10].

ocR,R) = SR,R)/SR,R).

D st - %(Z dy, + ) ).

reR,r'eR’ FER rer’

S(R,R)

The similarity s(r, ) between nodes r, ' is defined as

Ir =Ll

2~dwr {w-a- -
max(Lr, Ly, )

s(rr’) =

Wr = Ul

T-w)-(1- .
H1=w)-( max(Uy,U,r) )}

Here L,, L, are the number of proceding nodes of r, 7.
U,, U, the numbers of subnodes r,7’. w is the weight of
U,,U.and L,,L,,. When U, = U, = 0,U, = U =0,
one takes max(U,, U,) = 1,max(L,,L.) = 1. 7,7 are the
number of unmatching nodes, d,,, the depth from the node
r upto the root node.

5. Simulations

The images of “Girl,Aerial,Baboon,F16,House,L.ena,Milk
drop,Parrot,Pepper” are used in simulation. The distru-
bution surfaces Ky, Kp, K; of Gaussian curvature for the
tri-stimulus R, G, B are computed. The scale-space repre-
sentations or surfaces {Lk, (x, 1)}, {Lk, (x, D)}, {Lk,(x, )} are
formed by Gaussian filtering of 3 X 3 neighborhood. The
blobs are chosen as either the negative part of the positive
part of the Gaussian curnatures, then transformed to binary
images. In Fig.4 only the Reeb graph of {Lg,(x,?)} of
the Girl is shown. The propose method is then applied to
copyright tracing under various attacks of StirMarks4.0 .
The matching results of similarity between the original and
deformed “Girl” are shown in Table 1. Matching between
deformed “Girl” and other images is shown in Table 2.
These results shown a discrimination performance good
enough for copyright tracing or monitoring.
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Attack

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

o Attack o
JPEG:100 0.9434 JPG:90 0.9401
JPEG:80 0.9248 JPEG:70 0.9449
JPEG:60 0.9330 JPEG:50 0.9221
JPEG:40 0.9231 JPEG:35 0.9242
JPEG:30 0.9186 JPEG:25 0.9219
JPEG:20 0.9167 JPEG:15 09110
AFFINE:1 0.9234 AFFINE:2 0.8511
AFFINE:3 0.9470 AFFINE:4 0.8827
AFFINE:5 09110 AFFINE:6 0.9026
AFFINE:7 0.9324 AFFINE:8 0.9233
ROTATION:0.25 | 0.9521 | ROTATION:0.50 | 0.9155
ROTATION:0.75 | 0.9030 | ROTATION:0.90 | 0.8641
ROTATION:1.00 | 0.8724 | ROTATION:5.00 | 0.8405
ROTATION:10.0 | 0.8420 | ROTATION:15.0 | 0.8147
ROTATION:30.0 | 0.8024 | ROTATION:45.0 | 0.7991
ROTATION:90.0 | 0.9824 | RESCALE:0.50 | 0.8702
RESCALE:0.75 | 0.8901 | RESCALE:0.90 | 0.9591
RESCALE:1.10 | 0.9348 | RESCALE:1.50 | 0.9095
RESCALE:2.00 | 0.9016 PSNR:10 0.9849
PSNR:20 0.9837 PSNR:30 0.9753
PSNR:40 0.9803 PSNR:50 0.9618
PSNR:60 0.9728 PSNR:70 0.9801
PSNR:80 0.9845 PSNR:90 0.9797

PSNR:100 0.9814 - -

[10]

[11]
[12]

Table 1: Similarity:“Girl” - attacked ones

Image o Image o
Aerial 0.4036 | Baboon | 0.5721
F16 0.3757 | House | 0.4905
Milk drop | 0.4210 | Lena | 0.7134
Parrot 0.4454 | Pepper | 0.5185

Table 2: Similarity:“Girl” - other images

Figure 4: Reeb Graph of curvature of Red
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