
Invariants: A Group Theoretical Foundation and some Applications
in Signal Processing and Pattern Recognition

Reiner Lenz and Thanh Bui

Department Science and Technology, Linköping University
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Abstract—Many signal processing problems can be
described by a black-box model. In this paper the in-
put of the black-box is an object, the black-box is a
measurement device and the output are the measure-
ments produced. A typical example of an object is a
sheet of white paper illuminated by some source. A
camera is the measurement device and the produced
image is the measurement.

The black-box has a number of internal degrees of
freedom that are unrelated to the input but that will
affect the produced output. In the example we are
interested of the properties of the sheet of paper but
the image depends on the illumination and the camera
used, the geometrical relation between camera, illumi-
nation and paper, the time when the measurements are
recorded and many other additional factors. In many
applications we want to extract properties of the ob-
ject from the measurements, independent of the state
of the black-box. This is the basic motivation behind
all invariance frameworks in pattern recognition and
signal processing.

In this paper we will assume that the variations of
the measurement device can be modeled by transfor-
mation groups. We will then first describe a class of
invariants that can be derived from the theory of group
representations. We call these invariants integral in-
variants. Then we introduce another class of invariants
derived from the Lie-theory of differential equations.
We call them differential invariants.

We will illustrate the general theory with some ex-
amples from color constancy, pattern recognition and
linear system theory.

1. Introduction

One of the most important properties of natural and
technical systems is their ability to adapt to changing
environment conditions. For humans these adaptation
processes are so basic that we are almost never aware
of them. A few of the most well-known examples are:

Size and orientation changes: compensation of the ef-
fects of changing the geometrical relation between
object and observer

Color constancy describing the adaptation to chang-
ing illumination conditions

Shape deformations with face recognition as an im-
portant example

Ordering: related to the permutation of objects

The study of these and related perceptional mecha-
nisms has a long tradition in psychology [1] but it has
also received a lot of attention in engineering research,
for example in computer vision. A recent search (June
2005) on ”invariant* AND computer vision” in the
Science Citation Index resulted in 189 citations (see
also [9, 8] for a collection of earlier investigations).

2. Invariants and transformation groups

In the following we will use a black-box model to
describe our processing of the input signal. We will
assume that all functions are elements in a Hilbert
space H with a scalar product 〈 , 〉. We assume that
our processing unit is defined by a linear operator
from the Hilbert space to the real or complex num-
bers. From the Riesz representation theorem [13] fol-
lows that we can find a (filter-) element f ∈ H such
that the output o ∈ C of the unit is given by the scalar
product between the input signal s ∈ H and the filter

o = 〈f, s〉

Before we can define an invariant we have to specify
the operations under which the system is invariant.
We will consider operations that modify the signal in
some way, i.e. we consider transformations T : S →
S; s 7→ T(s). We use the index g ∈ G to denote these
transformations and sometimes we will write Tg(s) =
sg = g(s). We define that the system is invariant under
the transformations in G if

o = 〈f, s〉 = 〈f, sg〉; ∀g ∈ G

For arbitrary G it is difficult to derive general results
regarding the existence and form of invariants and in
the following we will always assume that G is a group.
Some of the results can be generalized for semi-groups
but we will not discuss this case here.
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In many cases the signals are defined on some
domain D and the transformations g are map-
pings: g : D → D. The transformed signals are then
given by sg(t) = s(g−1(t)). Typical examples are time-
shifts D = R, g(t) = t−∆ or rotations.

3. Integral invariants

The first class of invariant we call integral invariants
since they are, essentially, computed by an integration.
Since integration often contains a kind of smoothing
component we can expect that the invariants obtained
in this way are usually insensitive to noise. A typi-
cal example are signals s(ϕ) defined on the circle with
the rotations with rotation angles ψ as transforma-
tions g : sg(ϕ) = s(ϕ − ψ). We find an easy invariant
by averaging the signal over the circle, ie.: o = 〈1, s〉.
In the following we sketch a generalization of this idea.

We consider the transformations Tg as map-
pings H → H and require TgTh = Tgh; ∀g, h ∈ G.
We will assume that the scalar product in the Hilbert
space has the property that all Tg are unitary opera-
tors, ie.: 〈f, s〉 = 〈fg, sg〉 ∀g ∈ G.

The mapping g 7→ Tg is thus a mapping from the
group into the space of unitary operators on the signal
space. One of the main results of the theory of group
representations shows that there is a orthonormal de-
composition of H such that each each component is
invariant under all transformations in G:

H = H1 ⊕H2 ⊕ . . .

with sg ∈ Hk ∀g ∈ G, s ∈ Hk. We can assume
that the spaces Hk are the smallest possible and then
the theory of group representations gives a complete
overview over all possible such spaces Hk or it provides
tools to construct them from other, known spaces. The
general theory provides also tools to compute the di-
mensions of the subspaces Hk without the need to ac-
tually construct them.

For a given signal s the above decomposition gives
an expansion:

s = s1 + s2 + . . .

with 〈sk, sl〉 = δkl and sk, s
g
k ∈ Hk, ∀g ∈ G. For the

invariants we find:

‖s‖2 =
∑

k

‖sk‖2 =
∑

k

‖sg
k‖

2 = ‖sg‖2

and the norms ‖sk‖2 are all invariants.
We illustrate the construction with some examples.

Finite Groups and Signal Processing Consider
a set of points D = {pk, k = 1, . . .K} on a
two-dimensional grid. We require that the grid
points define regular polygons and that the set of
points is invariant against all transformations in

the symmetry group of these polygons. For the
square grid this group is known as dihedral group
D(4) and consists of all rotations with angles 0,
90, 180 and 270 degrees and all reflections on the
diagonals of the square. (D(6) is the symmetry
group of hexagonal grids and has similar proper-
ties). The signal space consists of all functions s
defined on the domain D and the dihedral group
acts on these signals by a transformation (rota-
tion/reflection) of the points in the domain D.
The signal space has dimension K and the theory
of group representations shows that the smallest
invariant subspaces have dimensions one and
two. Typical two-dimensional components are
obtained by gradient-type filters in the x- and
y-direction. The corresponding invariants are the
magnitude of the resulting filter result vectors.
They correspond to measures of edge-strength.

Shift-Invariance and Fourier Transform In this
case the signals s are functions s(ϕ) on the unit
circle and the transformations g are shifts or 2-D
rotations: sg(ϕ) = s(ϕ − ψ). From the algebraic
property that all 2-D rotations commute we find
that all the smallest, invariant subspaces Hk have
dimension one. In this case the decomposition is
given by the subspaces Hk =

{
eikϕ, 0 ≤ ϕ ≤ 2π

}
and the signals are written as Fourier series:

s(ϕ) =
∑

k

ckeikϕ

with complex coefficients ck. The invariants are
the absolute values |ck|. For k = 0 this gives the
averaging invariant mentioned previously.

3-D Rotations and Spherical Harmonics This is
similar to the last case but now we replace the cir-
cle with the surface of the unit sphere and the 2-D
rotations are replaced by their 3-D counterparts.
The group is no longer commutative and there-
fore the invariant subspaces are no longer one-
dimensional. In this case it can be shown that the
dimensions of the smallest invariant subspaces Hk

are 2k + 1 and the decomposition is

s =
∞∑

k=0

k∑
l=−k

cklY
l
k

where Y l
k are the surface harmonics. The corre-

sponding invariants are:
∥∥∥(ckl)

k
l=−k

∥∥∥.
In many cases the signals g, the operations Tg of the

group and the signal space are naturally given. If the
group G is too ”large” then the approach described
above may result in the case that all invariants are
constant. In that case it is possible to construct non-
trivial invariants by combining the invariant subspaces
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with the help of the tensor product and decomposing
the resulting product space. The group theoretical
structure leads also to fast implementation algorithms
and, under certain conditions, to a partial decorrela-
tion of the data.

Early contributions based on this approach can be
found in [3, 4, 10, 11]. Application to projection and
permutation invariants are found in [7] and recent a
description of fast filter systems is given in [5, 6].

4. Differential Invariants

Also in this approach we assume that the transfor-
mations form a group but in addition we require that
the groups have a differential structure. We consider
only matrix groups, ie. groups whose elements are
matrices. We will therefore use capital letters M,N
to denote the group elements. We also assume that
all group elements can be constructed via the matrix
exponential:

We assume that there is a Lie-algebra, ie. a vec-
tor space g with a skew-symmetric bilinear map [H,J ]
that satisfies the Jacobi identity

[[H,J ] ,K] + [[J,K] ,H] + [[K,H] , J ] = 0

and that each element M in the group G has the
form M = eJ = E + J + J2/2 + . . . + Jk/k! + . . .
with J ∈ g, E is the identity matrix. We denote ele-
ments in the Lie-algebra by capital letters H,J,K. For
an element J ∈ g and a real parameter t we define the
group elements M(t) = Mt = etJ . For a function f(x)
and a one-parameter transformation group M(t) we
can define the derivative:

df(Mt(x))
dt

∣∣∣∣
t=0

This construction shows that every one-parameter
group M(t) defines a differential operator. These op-
erators form a vector space of the same structure as
the Lie-algebra.

Now assume that the function f is invariant un-
der the group G. It is therefore invariant under all
the one-parameter subgroups M(t) of G and it is
therefore a solution of the partial differential equa-
tion 0 = df(Mt(x))

dt |t=0. In the case where the cor-
responding Lie-algebra is a finite-dimensional vector
space spanned by the basis elements J1, ..., JL it is suf-
ficient to require that the invariants are solutions of the
system of L partial differential equations defined by

0 =
df(etJlx)

dt

∣∣∣∣
t=0

l = 1, . . . , L

We will now illustrate the general approach with an
example from color image processing:

In many applications we are interested in the physi-
cal properties of objects independent of capturing con-
ditions such as illumination and geometry changes.
The interaction between illumination and objects in
the scene is very difficult and the topic of ongo-
ing research. Previous studies are, therefore, mostly
based on simpler semi-empirical models such as the
Dichromatic Reflection and the Kubelka and Munk
Model [12, 2]. Here we use the Dichromatic Reflection
Model as an example that illustrates how to construct
differential invariants.

The Dichromatic Reflection Model [12] describes the
relation between the incoming illumination light and
the reflected light (measured by the camera) as a mix-
ture of the light reflected from the surface and the
light reflected from the material body. The model as-
sumes that the light L(x, λ) reflected from an object
can be decomposed into two additive components, an
interface (specular) and a body (diffuse) reflectance:

L(x, λ) = mS(x)RS(λ)E(λ) +mD(x)RD(λ)E(λ)

Here x denotes a pixel in the image, RS(λ) and RD(λ)
are the specular and diffuse reflectance spectra, E(λ)
is the spectral power distribution of the incident light
and the weighting factors mS(x),mD(x) contain the
information about geometric characteristics like the
angle of incidence light, the angle of remittance light
and the phase angle. The measured pixel values Cn(x)
using N filters with spectral sensitivities given by
f1(λ)...fN (λ) are computed by:

Cn(x) =
∫
fn(λ) [mS(x)RS(λ)E(λ)

+mD(x)RD(λ)E(λ)] dλ
= mS(x)Sn +mD(x)Dn

Two object points of the same material have identical
reflectance functions and they only differ with respect
to their geometrical properties. Two neighboring pix-
els x1 and x2 are likely to consist of the same material
and for channel n the pixel values are:[

Cn(x1)
Cn(x2)

]
=

[
mS(x1) mD(x1)
mS(x2) mD(x2)

][
Sn

Dn

]
=M

[
Sn

Dn

]
The effects of the geometrical properties are collected
in the matrix M operating on the vectors (Sn Dn)′.
We can now construct invariants under geometrical
transformations by constructing invariants for various
subgroups of the group of 2× 2 matrices. Examples of
such subgroups are (1) 2-D Rotations (1 parameter),
(2) Uniform scalings (1 parameter), (3) Non-uniform
scalings (2 parameters) and (4) Shears (1 parameter).

Lie-theory provide the tools to investigate properties
of systems of PDE’s with algebraic methods. An ex-
ample: assume you want to construct invariants for ro-
tations and shears. Then the properties of Lie-algebra
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requires the inclusion of the scaling operations as well.
Instead of invariants for a 2-parameter group it is nec-
essary to consider a three-parameter group.

Our model separates the geometrical properties (de-
scribed by M) and the spectral properties. For
an N−channel camera this leads to a model where
the matrix operates on collections of N vectors simul-
taneously (ie. it operates on the space

(
R2

)N ):[
C(x1)
C(x2)

]
=M

[
S
D

]
A general result from Lie-theory now states that there
are 2N − k functionally independent invariants where
k is the dimension of the Lie-algebra. For the case of
RGB images and the full matrix group we have 2 · 3−
4 = 2 invariants. In many cases these invariants (the
solutions of the system of PDE’s) can be computed by
symbolic mathematics software like Maple. For RGB
pixels, denoted by C(xk) = (rk, gk, bk), we find the
following two invariants:

f =F
(
−g2 b1 + b2 g1
r1 g2 − r2 g1

,
b2 r1 − r2 b1
r1 g2 − r2 g1

)
Starting with rotations and shearing with two vari-
ables we saw that we need to include scalings, the gen-
erated Lie-algebra has dimension three and there are
three independent invariants:

f =F(r1 g2−r2 g1, b2 r1−r2 b1,−
−g2 b1+b2 g1
r1 g2−r2 g1

)

Here F is an arbitrary function of its arguments.

5. Conclusions

We showed that group theory provides a number of
tools to construct invariants. We divided these meth-
ods in two classes: integral and differential invariants.
The integral invariants presented here have their roots
in the theory of group representations. Differential
invariants, on the other hand, are derived with tools
from Lie-theory and differential equations. It is impos-
sible to give a comprehensive overview over this vast
field in such a short article and we have to refer the
reader to the literature.

Finally we want to make two remarks: Invariants
have been popular and have been re-discovered many
times. The approach here goes at least back to Weyl,
one of the founders of modern group theory, and his
ideas about symmetries. We should also remark that
there are strong similarities with conservations laws
in theoretical physics (Noether’s theorem). Finally
we want to point out that progress in the capabili-
ties of mathematical symbolic software, like Maple and
Mathematica, makes it possible to automatically solve
many of the systems of partial differential equations

defined by symmetry groups. Lie-theory does there-
fore not only answer the question of how many invari-
ants there are for a given problem but it also provide
the tools to construct these invariants automatically.
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