
Stability of Dissipative Interconnections

Kiyotsugu Takaba† and Jan C. Willems‡

†Department of Applied Mathematics and Physics, Kyoto University
Kyoto 606–8501 Japan

‡ESAT-SISTA, K.U. Leuven
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium,

Email: takaba@amp.i.kyoto-u.ac.jp, Jan.Willems@esat.kuleuven.be

Abstract—This paper is concerned with the stability
analysis of the interconnection of two systems. The idea
is that, under suitable assumptions, the interconnection of
dissipative systems is Lyapunov stable. This is the basis of
the classical stability criteria such as the small gain theo-
rem, the positive operator theorem, IQC’s, etc. In terms
of quadratic differential forms, this paper derives stabil-
ity conditions for the interconnection consisting of a linear
time-invariant subsystem and a general (nonlinear, time-
varying) subsystem in the general setting where the supply
rate is induced by a polynomial or rational matrix.

1. Introduction

The main principle that underlies the stability results that
have emerged in the control literature in the last decades
is the observation that under suitable conditions the inter-
connection of dissipative systems is Lyapunov stable. This
principle allows to prove stability of a closed system by
viewing it as the interconnection of two dissipative open
systems. This is the basis of the small gain theorem, the
positive operator theorem [10],[6], IQC’s [2], etc. There
have been several attempts to extend these results to the
behavioral context [3],[5]. Usually, in these results, the
supply rate used is assumed to be a memoryless function
of the system variables. However, by using quadratic dif-
ferential forms, this restriction can be dispensed with. The
aim of this paper is to outline the stability theory for inter-
connected systems in which one of the subsystems is linear
time-invariant, and the other is a general nonlinear and/or
time-varying system. The results generalize the classical
multiplier techniques to the behavioral framework.

2. Preliminaries

2.1. Dynamical systems

In the behavioral approach, a dynamical system is char-
acterized by its behavior. The behavior is the set of tra-
jectories which meet the dynamic laws of the system.
Throughout the paper, we identify a dynamical system with
its behavior. In the continuous-time setting, the behavior of
a dynamical system is typically defined by the set of all

solutions to a system of differential(-algebraic) equations

f (w,
dw
dt
, · · · , d

Lw
dtL
, t) = 0

Note that we make no a priori assumptions on the choice of
inputs and outputs among the elements of w. The behavior
is defined by

B =

{
w ∈ C∞(R,Rw)

∣∣∣∣∣∣ f (w(t), . . . ,
dLw
dtL

(t), t) = 0 ∀t ∈ R
}
.

When the system is linear time-invariant (LTI), the above
differential-algebraic equation becomes

R(
d
dt

)w = R0w + R1
dw
dt
+ · · · + RL

dLw
dtL
= 0,

where R(ξ) = R0 + R1ξ + · · · + RLξ
L ∈ R•×w[ξ]. We de-

fine Lw as the set of such LTI differential behaviors with w
variables.

A behavior B is said to be controllable if, for any w1,
w2 ∈ B and t0 ∈ R, there exist w ∈ B and T > 0 such that

w(t) =

{
w1(t) for t < t0,
w2(t) for t ≥ t0 + T

We denote by Lwcont the set of controllable LTI differential
behaviors in Lw.

2.2. Quadratic differential forms

A quadratic differential form (QDF) QΦ is defined as a
quadratic functional of w ∈ C∞(R,Rw) and its derivatives.
Namely,

QΦ(w) =
k∑

i=0

k∑
j=0

(
diw
dti

)�
Φi j

(
d jw
dt j

)

where Φi j ∈ Rw×w and Φ�ji = Φi j (i = 0, 1, . . . , k). We
can associate QΦ with a symmetric two-variable polyno-
mial matrix

Φ(ζ, η) =
k∑

i=0

k∑
j=1

Φi jζ
iη j ∈ Rw×ws [ζ, η].
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Notice that the indeterminates ζ and η correspond to the
differentiations on w� and w, respectively. A detailed dis-
cussion of QDFs can be found in [8].

A QDF QΦ is said to be nonnegative if QΦ(w)(t) ≥ 0
holds for all w and t, and positive if in addition QΦ(w) = 0
implies w = 0. In the same way, we can define the nonneg-
ativity and positivity along the behavior B.

2.3. Asymptotic stability

A behavior B is said to be asymptotically stable if
w(t) → 0 for t → ∞ holds for all w ∈ B. Usually, sta-
bility is proven by constructing a a Lyapunov function, that
is a functional V satisfying for some ε > 0

V(w)(t) ≥ 0

d
dt

V(w)(t) ≤ −ε‖w(t)‖2

∀w ∈ B and t ∈ R. It is easy to see that these inequalities
imply

∫ ∞
0
‖w(t)‖2 dt < ∞ for w ∈ B. Using some regular-

ity conditions that are implied by w ∈ B, this then leads
to w(t) → 0 for t → ∞. However, in the present informal
write-up, we will only be concerned with the above L 2 sta-
bility, which we will refer to as stability. The refinements
required to obtain asymptotic stability will be dealt with in
a sequel article.

3. Dissipation Theory

Definition 1 Let σ be a real-valued functional on
C∞(R,Rw) with σ(0) = 0. We call σ a supply rate. The
behavior B is said to be dissipative on R with respect to the
supply rate σ if

∫ ∞

−∞
σ(w)(τ)dτ ≥ 0 ∀w ∈ B ∩D,

where D denotes the family of infinitely often differen-
tiable functions with compact support. The behavior B is
said to be dissipative on R− with respect to the supply rate
σ if ∫ t

−∞
σ(w)(τ)dτ ≥ 0 ∀w ∈ B ∩D, ∀t ∈ R.

B is said to be strictly dissipative on R− with respect to σ
if there exists a positive constant ε such that
∫ t

−∞
σ(w)(τ)dτ ≥ ε

∫ t

−∞
‖w(τ)‖2dτ ∀w ∈ B ∩D, ∀t ∈ R

Definition 1 is a generalization of the definition of dissipa-
tivity onR− for LTI systems [1],[8],[9] to general nonlinear
and/or time-varying (NTV) systems. If B is time-invariant,
the integral interval in the above definition can be taken to
be (−∞, 0]. If B is (strictly) dissipative on R− with respect
to the QDF QΦ, then we simply say that B is (strictly) Φ-
dissipative on R−.

Another characterization of the dissipativity is in terms
of a dissipation inequality. Namely, B is dissipative with
respect to σ if there exists a a real-valued functional S on
C∞(R,Rw) satisfying S (0) = 0 and

d
dt

S (w)(t) ≤ σ(w)(t) ∀w ∈ B and t ∈ R.
This inequality is called the dissipation inequality, and S
a storage function. The next lemma establishes the rela-
tion between the dissipativity on R− and the dissipation in-
equality (see [1],[8],[9] for the case where B ∈ Lwcont and
σ = QΦ.).

Lemma 1 Let the controllable behavior B and the supply
rate σ be given. The following statements are equivalent.

(i) The behavior B is dissipative on R− with respect to σ.

(ii) There exists a nonnegative storage function S for B

and σ. If B belongs to Lwcont and σ is a QDF QΦ, then
there exists a storage function that is also a QDF.

Idea of Proof: (i)⇒(ii): Define

S +(w)(t) := inf
v ∈B ∩D,

v(τ) = w(τ) (τ ≥ t)

∫ t

−∞
σ(v)(τ)dτ

This is well-defined for any w ∈ B because B is control-
lable. Then, for any h > 0, there holds

S +(w)(t) +
∫ t+h

t
σ(w)(τ)dτ = inf

v ∈ B ∩D,
v(τ) = w(τ) (τ ≥ t)

∫ t+h

−∞
σ(v)(τ)dτ

≥ inf
v ∈ B ∩D,

v(τ) = w(τ) (τ ≥ t + h)

∫ t+h

−∞
σ(v)(τ)dτ = S +(w)(t + h)

Hence,

S +(w)(t + h) − S +(w)(t) ≤
∫ t+h

t
σ(w)(τ)dτ.

Dividing this inequality by h and taking h→ 0 yields

d
dt

S +(w)(t) ≤ σ(w)(t) ∀w ∈ B,

Hence, S + is a storage function. The nonnegativity of S +
is obvious from its definition.

(i)⇐(ii): Let S be a nonnegative storage function. By
integrating (3) from t0 to t, we get∫ t

t0

σ(w)(τ)dτ ≥ S (w)(t) − S (w)(t0)

Noting w ∈ B ∩D, taking t0 → −∞ yields∫ t

−∞
σ(w)(τ)dτ ≥ S (w)(t) ≥ 0

This completes the proof of (ii)⇒(i).

Remark 1 The storage function S + is referred to as the re-
quired supply for B and QΦ, since it represents the total
energy supply that is necessary to realize the future trajec-
tory w(τ), τ ≥ t.
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4. Stability Analysis of Dissipative Interconnection

We present two stability theorems for the interconnec-
tion of a LTI behavior B and a general NTV behavior G.

To explain the notion of interconnection, let w and w ′
be the manifest variables of B and G, respectively. The
interconnection is formed by taking w = w ′. That is, the
interconnection of two systems is defined by B ∩ G, the
intersection of their behaviors. This means that the trajec-
tories of the interconnection must satisfy the laws of both
systems.

B

w = w′

G

Figure 1: Interconnection

4.1. Stability with polynomial supply rate

The first result provides a stability criterion in terms of a
supply rate described by a QDF QΦ(w) with Φ(ζ, η) poly-
nomial matrix.

Theorem 1 Let Φ(ζ, η) ∈ Rw×ws [ζ, η] induce the QDF QΦ.
Assume that B ∈ Lwcont is strictly Φ-dissipative on R−, and
G is controllable and (−Φ)-dissipative on R−. Then, the
interconnection B ∩ G is stable.

Idea of Proof: It follows from Lemma 1 that there exist
nonnegative storage functions QΨ, S , and a positive con-
stant ε such that

d
dt

QΨ(w)(t) + ε‖w(t)‖2 ≤ QΦ(w)(t) ∀w ∈ B, t ∈ R,
d
dt

S (w)(t) ≤ −QΦ(w)(t) ∀w ∈ G, t ∈ R.

Adding these inequalities together, we obtain

d
dt

(QΨ + S )(w)(t) ≤ −ε‖w(t)‖2 ∀w ∈ B ∩ G, t ∈ R.

Since QΨ and S are nonnegative, we obtain (QΨ +
S )(w)(t) ≥ 0 ∀w ∈ B ∩ G, t ∈ R. Hence QΨ + S is a
Lyapunov function for B ∩ G, yielding

∫ ∞
0
‖w(t)‖2 dt < ∞.

Remark 2 The classical small gain and positive operator
theorems are recovered by taking

Φ(ζ, η) =

(
Im 0
0 −Ip

)
,

(
0 Ip

Ip 0

)
.

We shall present a typical example where Φ(ζ, η) is a
(two-variable) polynomial matrix.
Example (Popov criterion):

We consider the feedback interconnection of a SISO LTI
system B and a memoryless time-invariant nonlinearity N.
Note that, of course, N is a member of NTV systems. Let
B and N be described by a stable transfer function G(ξ)

B

G(ξ)

N

ϕ

��

�

�
���0 u y

+−

Figure 2: Feedback interconnection

and a nonlinear function ϕ, respectively. Also, we partition
the manifest variable w as w = (y, u) to conform with y =
G(ξ)u and u = −ϕ(y) as described in Figure 2. We assume
that ϕ satisfies the so-called sector condition

ϕ(0) = 0, 0 ≤ ϕ(y)
y
≤ k

for some k > 0. Define

Φα(ζ, η) =
1
2

(
0 1 + αζ

1 + αη 2
k

)

for a positive constant α. It is easy to show from the sector
condition that N is (−Φα)-dissipative on R−. In fact, since
we have

−QΦα (w) = −(y + α
dy
dt

)u − u2

k

= −1
k
ϕ(y){ϕ(y) − ky} + αϕ(y)

dy
dt
≥ αϕ(y)

dy
dt

for all (y, u) ∈ N, N is (−Φα)-dissipative on R− with a stor-
age function S (w) = α

∫ y

0
ϕ(s)ds. The nonnegativity of

S (w) along N follows from the sector condition. By Theo-
rem 1, the feedback interconnection B∩N is stable if there
exists an α > 0 such that B is strictly Φα-dissipative on R−.
It is not difficult to show that, for a stable transfer function
G(ξ) and α ≥ 0, the Φα-dissipativity of B on R− is guaran-
teed by the existence of a constant δ satisfying(

G(iω)
1

)∗
Φα(−iω, iω)

(
G(iω)

1

)

= Re[(1 + iαω)G(iω)] +
1
k
≥ δ > 0, ∀ω ∈ R

This stability condition is known as the Popov criterion.
If this condition is satisfied, B admits a nonnegative QDF
storage function QΨ. Then we obtain the Luré-type Lya-
punov function

(QΨ + S )(w) = QΨ(w) + α
∫ y

0
ϕ(s)ds.

4.2. Stability with rational supply rate

We now extend the result in the previous subsection to
the case whereΦ(ζ, η) is a rational matrix. For this purpose,
we assume that Φ(ζ, η) is factorized as

Φ(ζ, η) = H�(ζ)ΣΦH(η), det H � 0
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where ΣΦ ∈ Rw×w is a nonsingular constant matrix of the
form of ΣΦ = diag(Ik,−Il), and H(ξ) is a rational matrix in
R
w×w(ξ). We can assume that H(ξ) has all poles in Reξ < 0.

From the viewpoint of classical stability theory, we can say
that H(ξ) serves as a multiplier for the interconnection.

Let v denote the output of the system with transfer func-
tion H(ξ) and input w. Introduce the left coprime fac-
torization of H(ξ) over the polynomial ring as H(ξ) =
D−1(ξ)N(ξ), D,N ∈ Rw×w[ξ]. Then, we obtain

D(
d
dt

)v − N(
d
dt

)w = 0.

Define an augmented system composed of B and the dy-
namics of H(ξ) by

Baug :=
{
(v,w) ∈ C∞(R,R2w)

∣∣∣ w ∈ B, D( d
dt )v = N( d

dt )w
}

Clearly, Baug belongs to L2w. Note that, for any w ∈ B,
there exists a v ∈ C∞(R,Rw) satisfying (v,w) ∈ Baug. The
controllability of Baug does not depend on the choice of
coprime factors D(ξ),N(ξ), though they are not unique. In
the same manner, we can also define the augmented system
Gaug for the general NTV behavior G.

Moreover, the supply rate QΦ is redefined as

(
v
w

)� (
ΣΦ 0
0 0

) (
v
w

)
=:

(
v
w

)�
Θ

(
v
w

)
= QΘ(v,w),

where we abuse the notation “QΦ” for the rational Φ(ζ, η).
From the above observation, B is Φ-dissipative on R−

iff Baug is dissipative on R− with respect to the memoryless
quadratic supply rate QΘ(v,w). If Baug is controllable, strict
Φ-dissipativity of B on R− is equivalent to the existence
of a nonnegative storage function QΨ(v,w) and a constant
ε > 0 such that

d
dt

QΨ(v,w)(t)+ε‖w(t)‖2≤ QΘ(v,w)(t)∀(v,w) ∈ Baug, t ∈ R.

It should be noted that strict Φ-dissipativity of B on R− is
weaker than the strict Θ-dissipativity of Baug on R− due to
the absence of the term ε‖v(t)‖2 from the left-hand side of
the above inequality.

Similarly, the general NTV behavior G is (−Φ)-
dissipative on R− iff Gaug is (−Θ)-dissipative on R−. If Gaug

is controllable, the latter condition is equivalent to the ex-
istence of a nonnegative storage function S (v,w) such that

d
dt

S (v,w)(t) ≤ −QΘ(v,w)(t) ∀(v,w) ∈ Gaug, t ∈ R.

In the same way as the previous section, we immediately
obtain the next theorem.

Theorem 2 Let a rational matrix Φ(ζ, η) = H�(ζ)ΣΦH(η)
∈ Rw×ws (ζ, η), det H � 0, induce the supply rate QΦ. Sup-
pose that both Baug and Gaug are controllable. Then, B ∩ G

is stable if B ∈ Lwcont is strictly Φ-dissipative on R− and G

is (−Φ)-dissipative on R−.

5. Conclusion

In the behavioral framework, we have derived the stabil-
ity conditions of the dissipative interconnection of an LTI
behavior B and a general NTV behavior G by using QDFs
both in the cases where the supply rate is induced by a poly-
nomial matrix and a rational transfer matrix. The present
results generalize the classical multiplier theory to the be-
havioral context where there is no a priori assumption on
the input-output relation.
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