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Abstract—In the early sixties Brayton and Moser proved
three theorems concerning the stability of nonlinear elec-
trical circuits. The applicability of each theorem depends
on three different conditions on the type of admissible non-
linearities in circuit. Roughly speaking, this means that the
theorems apply to either circuits that contain purely linear
resistors or conductors—combined with linear or nonlinear
inductors and capacitors, or to circuits that contain purely
linear inductors and capacitors—combined with linear or
nonlinear resistors and conductors. This brief note presents
a generalization of Brayton and Moser’s stability theorems
that also includes the analysis of circuits that contain non-
linear resistors, conductors, inductors and/or capacitors at
the same time.

1. Background and Motivation

In the early sixties, J.K. Moser [3] developed a mathemati-
cal analysis to study the stability of circuits containing tun-
nel diodes1. His method was based on a certain ‘poten-
tial function’, which was four years later generalized and
coined ‘mixed-potential’ by the same author, together with
his companion R.K. Brayton, in [1]. Basically, their theory
is based on the observation that the differential equations
describing the behavior of a large class of nonlinear RGLC
circuits can be written in the form

Q(x)ẋ = Px(x), (1)

wherex = col(i1, . . . , i`,v1, . . . ,vc) ∈ Rn, n = ` + c, repre-
sents the currents through the` independent inductors (L)
and the voltages across thec independent capacitors (C),
respectively. The notationPx(x) denotes the gradient of
the scalar functionP : Rn → R, i.e., Px(x) := ∂P(x)/∂x.
This function—the mixed-potential—in its present form
captures all the necessary information about the topolog-
ical structure (circuit graph), and the characteristics of the

1It should be mentioned that related ideas where already contained in
a paper by Sẗohr in the early fifties (see [2] for some historical remarks).

resistive elements contained in the circuit. The function
P(x) = P(i,v) has the units of power and is constructed as

P(i,v) = A(i) − B(v) + N(i,v), (2)

whereA(i) andB(v) denote the current potential (content)
related with the current-controlled resistors (R) and voltage
sources, and the voltage potential (co-content) related with
the voltage-controlled resistors2 (G) and current sources,
respectively. The functionsA(i) andB(v) are assumed to be
twice differentiable. The functionN(i,v) is determined by
the interconnection of the inductors and capacitors:

N(i,v) =
∑̀
j=1

c∑
k=1

γjki jvk,

whereγ jk represents the interconnection betweeni j andvk.
Furthermore, then × n matrix Q(x) = Q(i,v) contains the
incremental values of the inductors and capacitors, i.e.,

Q(i,v) =

−L(i) 0

0 C(v)

 , (3)

of which each entry is assumed to be a differentiable func-
tion.

The main motivation of writing the circuit dynamics in the
form (1) is that, by means of the mixed-potential, Brayton
and Moser were able to proof several theorems concerning
global asymptotic stability. Additionally, these theorems
offer criteria for the amount of admissible negative resis-
tance and for the analysis of performance. Two of Brayton
and Moser’s stability theorems—Theorem 3 and 4 of [1],
pp. 19 and 21, respectively (which for ease of reference are
added in the Appendix)—give conditions which depend on
the interconnection of the circuit as given by the matrix
γ (formed by the elementsγjk) but are independent of the
nonlinearities in either the R, L and C or the G, L and C
elements. Some additional requirements of Theorem 3 and
4 of [1] are that either the Hessian3 of the current or voltage

2Voltage-controlled resistors are often referred to as conductors.
3For K : Rn → R, we denoteKxx(x) := ∂2K(x)/∂x2.
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potentials should beconstantandpositive definite, i.e., ei-
therAii (i) > 0 or Bvv(v) > 0. Roughly speaking, this means
that eitherall inductors should have some linear series re-
sistance orall capacitors should have some linear parallel
conductor. On the other hand, the third theorem—Theorem
5 of [1], pp. 22—does not depend on the interconnection
matrixγ but gives conditions which depend on the nonlin-
earities in both R and G. However, as a dual to Theorem 3
and 4, this theorem requires linearity of L and C.

In summary, Table 1 shows the assumptions on the cir-
cuit elements regarding the applicability of each of the
three theorems. The column marked with ‘?’ represents
the ‘missing’ theorem, i.e., a generalization of the existing
three theorems. It is the purpose of this brief note to further
generalize the results of [1] and fill in the column marked
with ‘?’. In the following sections a new theorem will be
proved which omits all possible linearity requirements on
the circuit elements and thus completes Table 1. Like in
[1], we will assume thatQ(x) is globally invertible.

Table 1: Different assumptions for Brayton and Moser’s stability theo-
rems; linear (LIN) and nonlinear (NL). The column marked with ‘?’ rep-
resents the ‘missing’ theorem.

Type Thm. 3 Thm. 4 Thm. 5 ?

R LIN NL NL NL
G NL LIN NL NL

L/C NL NL LIN NL

2. Preliminaries

The underlying idea to proof the stability theorems 3, 4,
and 5 of [1], is the search for an nontrivial alternative pair,
sayQ?(x) andP?(x), other thanQ(x) andP(x) such that (1)
can be written as

Q?(x)ẋ = P?x (x), (4)

and such that the symmetric part ofQ?(x) is negative defi-
nite, i.e., such that

Q?s (x) :=
1
2

(
Q?(x) + Q?T(x)

)
< 0, (5)

for all x. A necessary and sufficient condition for (4) to
describe the same dynamics as (1) is

Q?(x)Q−1(x)Px(x) = P?x (x). (6)

The key observation is that for anyconstantsymmetric ma-
trix M ∈ Rn×n and arbitrary constantλ ∈ R, a family of

suitable pairs can be represented by

Q?(x) = Pxx(x)MQ(x) + λQ(x), (7)

P?(x) =
1
2
〈
Px(x), MPx(x)

〉
+ λP(x), (8)

where the notation〈·, ·〉 denotes the usual inner product,
e.g., for anyx,y ∈ Rn, 〈x,y〉 := xTy. This is easily seen
sinceP?x (x) = Pxx(x)MPx(x) + λPx(x), and therefore

Q?(x)Q−1(x)Px(x) =

Pxx(x)MQ(x)Q−1(x)Px(x) + Q(x)Q−1(x)Px(x),

which implies the equality of (6), and thus (1) and (4) co-
incide.

The requirement thatM should be chosen constant is pre-
cisely the reason for the several linearity assumptions of the
theorems in [1] (see Table 1). Hence, the first step towards
a generalization of the theorems is to extend the above pro-
cedure toM = M(x).

From previous work [4], we know that a generalization of
admissible pairs,Q?(x) andP?(x), is defined by

Q?(x) =
1
2

Pxx(x)M(x)Q(x)+

1
2

(
PT

x (x)M(x)
)

x
Q(x) + λQ(x),

(9)

P?(x) =
1
2
〈
Px(x), M(x)Px(x)

〉
+ λP(x). (10)

The proof of this result is fairly simple by noting that

P?x (x) =
1
2

Pxx(x)M(x)Px(x)

+
1
2

(
PT

x (x)M(x)
)

x
Px(x) + λPx(x),

which again, by using (6), clearly restores the original de-
scription (1). The characterization of the pair (9) and (10)
is the key to establish our main result.

3. The Missing Theorem

As discussed before, the original form of Brayton and
Moser’s fifth theorem does not depend on the circuit in-
terconnection matrixγ, but it imposes the condition that
the inductors and capacitors are linear. Using the theory
developed in the previous section, the latter restriction can
be removed as follows. Let

K1(i,v) :=
1
2

Aii (i) +
1
2

([
Ai(i) + γv

]T L−1(i)
)

i
L(i),

K2(i,v) :=
1
2

Bvv(v) +
1
2

([
Bv(v) − γT i

]TC−1(v)
)

v
C(v),
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and let

Ks
j (x) :=

1
2

(
K j(x) + KT

j (x)
)
, j = 1, 2

denote their corresponding symmetric parts. Furthermore,
let the eigenvalues of a symmetric matrixS(x) ∈ Rm×m be
denoted by the setσ(x) = {σ1(x), . . . ,σm(x)}, and letµ(S)
represent theinfimumof the eigenvalues ofS(x) for all x,
i.e.,

µ(S) = inf
x,l

{
σl(x)

}
, l = 1, . . . ,m.

Inspired by [1], we start by selectingM(x) = M(i,v) andλ
in (9) and (10) as

M(i,v) =

L−1(i) 0

0 C−1(v)

 ,
and

λ =
µ2 − µ1

2
,

whereµ1 := µ
(
K̃s

1

)
andµ2 := µ

(
K̃s

2

)
represent the infima of

the eigenvalues of the matrices

K̃s
1(i,v) := L−1/2(i)Ks

1(i,v)L−1/2(i)

K̃s
2(i,v) :=C−1/2(v)Ks

2(i,v)C−1/2(v).

Hence, by substituting the latter into (9) and (10), we obtain

Q?(i,v) =

−K1(i,v) γ

−γT −K2(i,v)

 + λ  −L(i) 0

0 C(v)

 ,
and

P?(i,v) =
1
2

〈
Pi(i,v), L−1(i)Pi(i,v)

〉
+

1
2

〈
Pv(i,v),C−1(v)Pv(i,v)

〉
+ λP(i,v),

(11)

which enables us to proof the following theorem.

Theorem 5?: Under the condition that

µ1 + µ2 ≥ δ, δ > 0, (12)

andP?(x) → ∞ as|x| → ∞, whereP?(x) is given by (11),
then all trajectories of (1) tend to the set of equilibrium
points ast → ∞.

Proof:The proof follows along the same lines as the proof
of Theorem 5 in [1], and basically consists in evaluating
the sign of

Ṗ?(x) =
〈
ẋ, P?x (x)

〉
=
〈
ẋ, Q?(x)ẋ

〉
,

for all x, i.e., we need to show that under condition (12)
the symmetric part ofQ?(x) is negative definite. Hence,
by definingy := L1/2(i)di/dt andz := C1/2(v)dv/dt, and by
using (5), one can write (for sake of brevity we omit the
arguments inx)

−
〈
ẋ, Q?s ẋ

〉
=
〈
y, L−1/2Ks

1L−1/2y
〉
+
〈
z,C−1/2Ks

2C
−1/2z
〉

+λ
(〈

y,y
〉
−
〈
z,z
〉)

≥
(
µ1 + λ

)〈
y,y
〉
+
(
µ2 − λ

)〈
z,z
〉

≥
µ1 + µ2

2

(〈
y,y
〉
+
〈
z,z
〉)

> 0,

for all y,z , 0, which under condition (12) shows that
−
〈
ẋ, Q?(x)ẋ

〉
is positive semi-definite and is equal to zero

only if and only if ẋ = 0. Thus, since
〈
ẋ, Q?(x)ẋ

〉
< 0, for

all ẋ , 0, we conclude thaṫP?(x) is monotone decreasing
except at the equilibria. �

It is directly noticed that if the inductors and capacitors are
constant, i.e.,L(i) = L andC(v) = C, the matricesK1(i,v)
andK2(i,v) reduce toK1(i,v) = Aii (i) andK2(i,v) = Bvv(v),
respectively. In that case, Theorem 5? reduces to Theo-
rem 5 in [1] (see also the Appendix). However, in case of
nonlinear inductors and capacitors, the difference between
Theorem 5? and Theorem 5 of [1] are the additional terms
involving the derivatives ofL−1(i) andC−1(v). We also ob-
serve that in contrast to Theorem 5, the stability condition
of Theorem 5? now depends on the graph of the circuit
since the interconnection matrixγ now appears inK1 and
K2, and thus in the criterion (recall the discussion about the
differences between the three original theorems in Section
1).

4. Discussion

So far, we have derived a new stability theorem that omits
the restrictions imposed by the existing stability theorems
originally proposed by Brayton and Moser. Our result is
mainly based on the generalization of Theorem 5 in [1].
However, the characterization of the pair (9) and (10) also
naturally suggest to generalize Theorem 3 and 4 of [1].
This would mean that we have to select theM-matrix in
(9) and (10) either as

M(i) =

 2A−1
ii (i) 0

0 0

 ,
or

M(v) =

 0 0

0 2B−1
vv (v)

 ,
respectively.
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As discussed in Section 1, invertibility of the matrixAii (i)
(resp.Bvv(v)) means that at least every inductor (resp. ca-
pacitor) should contain a series resistor (resp. parallel con-
ductor) with a strictly convex characteristic (Ohmian) rela-
tion. These conditions seem more restrictive than the con-
ditions imposed by Theorem 5?. For that reason we will
not expose any further details herein, and just mention their
existence.
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Appendix

The three Brayton-Moser stability theorems [1] are:

Theorem 3:If Aii (i) is constant, symmetric and strictly pos-
itive, B(v) + |γv| → ∞ as|v| → ∞, and4∥∥∥∥L 1

2 (i)A−1
ii (i)γC−

1
2 (v)
∥∥∥∥ ≤ 1− δ, δ > 0,

for all (i,v), then all trajectories of (1) tend to the set of
equilibrium points ast → ∞.

Theorem 4:If Bvv(v) is constant, symmetric and strictly
positive,A(i) + |γT i| → ∞ as|i| → ∞, and∥∥∥∥C 1

2 (v)B−1
vv (v)γT L−

1
2 (i)
∥∥∥∥ ≤ 1− δ, δ > 0,

for all (i,v), then all trajectories of (1) tend to the set of
equilibrium points ast → ∞.

Theorem 5:Under the condition thatL andC are constant,
symmetric and strictly positive,

µ
(
L−1/2Aii (i)L

−1/2
)

+µ
(
C−1/2Bvv(v)C−1/2

)
≥ δ, δ > 0,

for all (i,v), andP?(i,v) → ∞ as|i| + |v| → ∞, all trajecto-
ries of (1) approach the equilibrium solutions ast → ∞.

4The notation||K|| denotes the spectral norm of a matrix.
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