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Abstract—The purpose of this paper is to bring to the

attention of the control community some of the aspects of

the practically important, and mathematically challenging,

power factor compensation problem. Our main contribu-

tion is identifying the key role played by cyclo–dissipativity
in the solution of the problem. Namely, we prove that

a necessary condition for a (shunt) compensator to im-

prove the power transfer is that the load satisfies a given

cyclo–dissipativity property, which naturally leads to a for-

mulation of the compensation problem as one of cyclo–

dissipasivation. Cyclo–dissipative systems exhibit a net ab-

sorption of (abstract) energy only along closed paths, while

a dissipative system cannot create energy for all trajecto-

ries, henceforth, this concept generalizes the one of passi-

vation.

1. Introduction to the Power Factor Compensation
Problem

We consider the classical scenario of energy transfer

from an q–phase ac generator to a load as depicted in Fig.

1. The voltage and current of the source are denoted by the

column vectors vs(t), is(t) ∈ R
q and the load is described

by a (possibly nonlinear and time varying) q–port system

Σ. We make the following assumptions:

Assumption A.1 All the signals in the system are periodic

with fundamental period T and belong to the space

L2[0,T ):={x : [0,T )→R
q| ‖x‖2 :=

1
T

∫ T

0

|x(τ)|2dτ <∞},
where ‖ · ‖ is called the rms value of x and | · | is the Eu-

clidean norm.

Assumption A.2 The source is ideal, in the sense that

vs(t) remains unchanged for all loads Σ.

Assumption A.1 captures the practically reasonable sce-

nario that the system operates in a periodic, though not nec-

essarily sinusoidal, steady state regime. This is the case of

the vast majority of applications of interest for the problem

at hand. Assumption A.2 is tantamount to saying that the

source has no impedance and is justified by the fact that

most ac apparatus operate at a given voltage, with the ac-

tual drained current being specified by the load.

The presence of distorted signals, in this case the

current is(t), has the deleterious effect of reducing the

power transmission efficiency. Let us discuss how this

happens. The rated power of the source is the product of

its maximum deliverable rms voltage and current. On the

other hand, the average (or active) power delivered by the

source is defined as

P :=< vs, is >, (1)

where < vs, is >:= 1
T

∫ T

0
v�

s (t) is(t) dt denotes the

inner product in L2[0, T ). From (1) and the Cauchy–

Schwarz inequality [1] we have

P ≤ ‖vs‖‖is‖ =: S,

where we have defined the apparent power S. From the

inequality above we conclude that, under Assumption A.2,

S is the highest average power delivered to the load among

all loads that have the same rms current ‖is‖. The identity

holds if and only if vs(t) = Ris(t) for some unitary matrix

R ∈ R
q×q , that is R�R = Iq. If this is not the case P < S

and compensation schemes are introduced to reduce this

mismatch. That is, to maximize the ratio P
S —that is called

the power factor (PF) [2].

A typical compensation configuration is shown in Fig. 2

where, to preserve the rated voltage at the load terminals

the compensator Σc is placed in shunt. Also, to avoid

power dissipation, Σc is restricted to be lossless, that is,

< v, ic >= 0, (2)

where ic(t) is the compensator current and we notice that

vs(t) = v(t). Given these restrictions, and under the

standing Assumption A.2, the problem of maximizing P
S

admits an equivalent reformulation, which has a simple

geometric interpretation and an explicit solution. First,

referring to Fig. 2 we notice that the compensator lossless-

ness condition (2) translates into

< v, is >=< v, i > . (3)

Second, if Σ and v(t) are fixed then i(t), and consequently

P , are fixed. Hence:

maximizing P
S with lossless compensators is equivalent to

minimizing ‖is‖ subject to the constraint (3).
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Figure 1: Circuit schematic of a polyphase ac system.

The optimization problems above are rather unprecise

and considerations on the actuator are required for their

clean formulation. Two types of compensator devices are

available in practice, circuits with energy–storing compo-

nents or regulated current sources—also called “with or

without energy storage” in the circuits literature.

2. Lossless Shunt Compensation: A Cyclo–
Dissipativity Framework

In this section we consider the use of lossless shunt

elements for PF compensation and assume that Σc can be

represented with its admittance operator Yc : v → ic.
From the Projection Theorem [1] we have

Fact 1 Fix v(t), i(t). Among all currents is(t) that satisfy

the constraint (3), the one with minimal rms value ‖is‖ is

given by

i�
s(t) =

< i,v >

‖v‖2
v(t), (4)

which is known in the literature as Fryze’s current [3].

Hence, from Fact 1 and ic(t) = is(t) − i(t) it is clear that

any lossless operator Yc that solves
< i,v >

‖v‖2
v(t) − i(t) = (Ycv)(t),

for the given i(t),v(t), is optimal. In spite of its apparent

simplicity, it is not clear to these authors how to use this

“data–interpolation” relationship in a practically meaning-

ful way.

From the previous Section we have that the PF com-

pensation problem is mathematically equivalent to the

problem of minimization of ‖is‖ subject to the constraint

(3). From

‖is‖2 = ‖i‖2 + ‖ic‖2 + 2 < ic, i >,
it is clear that a necessary condition to reduce the rms

value of is(t) is

< ic, i >< 0. (5)

It turns our that the latter condition and the restriction of

compensator losslessness can be nicely captured using the

concept of cyclo–dissipativity and its associated abstract
energy1. In our previous work [9–12] we used the more

restrictive notion of passivity and the actual electric and

magnetic energies that, unfortunately, impose extremely

conservative conditions. Roughly speaking, the key advan-

tages of cyclo–dissipativity are that it restricts the set of in-

puts of interest to those that generate periodic solutions—a

feature that is intrinsic in PF compensation problems—it

furthermore deals with “abstract” energies.

1Dissipativity theory has been extensively investigated by the control

community in the last few years, see the books [4–6] or the recent survey

papers [7, 8] for an extensive list of references.

is(t)
ic(t)

i(t)

vs(t) v(t)

Σc
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Figure 2: Typical compensation configuration.

Definition 1 [13] Assume a dynamical system, with
input u ∈ L2[0, T ) and output y ∈ L2[0, T ), admits a
state–space representation with state vector x ∈ X . The
system is cyclo–dissipative with respect to the supply rate
w(u,y), where w : L2[0, T )×L2[0, T ) → R, if and only if∫ T

0

w(u(t),y(t))dt ≥ 0

for all u : [0, T ) → L2[0, T ) such that x(T ) = x0 where
x(0) = x0. It is said to be cyclo–lossless if the inequality
holds with identity.

In words, a system is cyclo–dissipative when it can-

not create (abstract) energy over closed paths in the state–

space. It might, however, produce energy along some ini-

tial portion of such a trajectory; if so, it would not be

dissipative. On the other hand, every dissipative system

is cyclo–dissipative. As an example, (possibly nonlinear)

RLC circuits with input and output their port currents and

voltages, respectively, are cyclo–dissipative with supply

rate w(u,y) = u�y provided that all resistances are pas-

sive2. Notice that we do not assume the inductors and

capacitors are passive—that is, that their stored energy is

non–negative—if so, the circuit is in addition passive.

It has been shown in [13] that, similarly to dissipative

systems, one can use storage functions and dissipation

inequalities to characterize cyclo–dissipativity provided

we eliminate the restriction that the functions—called

virtual storage functions—be non–negative and they are

only required to be bounded (from above and below).

Theorem 1 [13] A system with state representation
is cyclo–dissipative iff, for all x ∈ X which are both
controllable and reachable, there exists a virtual storage
function φ : X → R. That is, a function that satisfies

φ(x0) +
∫ T

0

w(u(t),y(t))dt ≥ φ(x1)

for all u ∈ L2[0, T ) such that x(0) = x0 and x(T ) = x1.

We are in position to formulate the PF compensation

problem in terms of cyclo–dissipativity—a paradigm that

we propose for future study.

Definition 2 (Cyclo–dissipasivation) Consider the sys-
tem of Fig. 2. Assume the load Σ is described by its
admittance operator Y : v → i and it admits a state–
space representation. Find a compensator with admittance
Yc : v → ic and a state–space representation, such that

2This fact that can be easily proven using Tellegen’s Theorem [17].
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(i) Yc is cyclo–lossless with supply rate v�ic,
(ii) The overall system with input v and output col(i, ic)

is cyclo–dissipative with supply rate −i�ic.

A first step toward the solution of this general synthesis

problem is to consider that the (lossless) compensator is
given and we investigate under which conditions on the
load the cyclo–dissipativity property is satisfied, that is,

we want to characterize classes of loads for which it is

possible to improve the PF with a given compensator.

3. Compensation with LTI Capacitors and Inductors
and Load Cyclo–Dissipativity

Let us consider first capacitive compensation, for which

we have, Yc = Ccp, where Cc = {Cij} ∈ R
q×q, Cij ≥ 0

is the capacitance matrix and p = d
dt , then the necessary

condition for PF compensation (5) becomes

< i,Ccv̇ >≤ 0 ⇔ <
˙̂
i,Ccv >≥ 0, (6)

where we have used the property < ẋ,y >= − < x, ẏ >,

which holds for all periodic signals x,y. Let us assume

that the load admits a state representation. If the voltage

sources are in series with inductors the elements of i
qualify as state variables, that is, x = col(i, χ), with

χ ∈ R
n−q denoting the remaining state variables. The

dynamics of the load is then described by

ẋ = f(x,v) =
[

fi(x,v)
fχ(x,v)

]
, (7)

where fi(x,v) ∈ R
q . We can state the following:

Fact 2 Consider the nonlinear polyphase load Σ, with port

variables (v, i), and dynamics (7). If the PF can be im-

proved (for all periodic, possibly non–sinusoidal, vs) with

shunt LTI capacitors then there exists a matrix Cc =
{Cij} ∈ R

q×q, Cij ≥ 0 such that the system with out-

put y = C�
c fi(x,v), is cyclo–dissipative with supply rate

y�v. That is, the system is cyclo–passive.

The fact above indicates that cyclo–dissipative loads (in

the sense defined above) constitute an extension, to the

nonlinear non–sinusoidal polyphase case, of the so–called

inductive loads. This characterization takes a particularly

simple form for single–phase loads, i.e., (6) is equivalent to

<
˙̂
i, v >≥ 0, (8)

establishing that: If the PF can be improved (for all, possi-
bly non–sinusoidal, vs) with a shunt LTI capacitor then the
single–phase load (possibly nonlinear) is cyclo–dissipative

(with supply rate v
˙̂
i).

For inductor compensators Yc = L−1
c

1
p , with Lc =

{Lij} ∈ R
q×q, Lij ≥ 0 the inductance matrix, and the

inequality of interest is < i,L−1
c

∫
v >≤ 0 ⇔ <∫

i,L−1
c v >≥ 0,, that admits also a cyclo–dissipativity

interpretation—provided the current sources have capaci-

tors in parallel. As before, for q = 1 the condition becomes

<
∫

i, v >≥ 0.

For brevity, we restrict in the sequel to capacitor

compensation—a scenario which is very common since

loads are typically assumed to be dominantly inductive—

for single–phase loads, that is q = 1. Two questions arise

immediately:

Q1 How can we characterize cyclo–dissipative loads?

(that is, loads for which (8) holds)

Q2 If PF improvement is possible, what is the optimal

value of the capacitance?

A solution to the second question is straightforward and

well known in the circuits community. Indeed, ‖is‖2 in this

case takes the form

‖is‖2 = ‖i‖2 − 2Cc <
˙̂
i, v > +C2

c ‖v̇‖2,

which is a quadratic equation in the unknown Cc and

achieves its minimum at

C�
c =

<
˙̂
i, v >

‖v̇‖2
. (9)

See also [3] for the polyphase case and some illustrative

examples.

Similar optimization problems for other reactive circuit

topologies have been studied in the circuits literature. See

[14] for an extensive treatment of the topic. However, there

seems to be many open problems, for instance in [15,16], it

is shown that for parallel RL circuits the optimal solution

corresponds to a negative inductance and a switched series

LC circuit is proposed as an alternative option. To the best

of our knowledge, no systematic study of this kind of op-

timization problem—that would lead, among other things,

to a better understanding of admissible topologies and sub-

optimal solutions—has been carried out.

To explore question Q1, consider the following lemma

Lemma 1 Assume a (possibly nonlinear) RLC circuit, then
the cyclo–dissipativity of the circuit is independent of the
average steady–state behavior of the resistors. Moreover,
inner products for the resistive elements, either voltage or
current–controlled, are zero. Henceforth,

<
˙̂
i, v >=< vL,

˙̂
iL > − < v̇C , iC > . (10)

where the sub–indices L and C stand from the voltages and
currents at inductive and capacitive elements, respectively.

Even though resistors voltages and currents do not ex-

plicitly appear in the average supply rate (10) it is clear

that they play a role in the overall voltage and current dis-

tributions. To unveil the role of the resistors on the cyclo–

dissipativity property we define the function

q(t) := v�
L (t)˙̂iL(t) − v̇�

C(t)iC(t),

in view of (10), we have 1
T

∫ T

0
q(t)dt =<

˙̂
i, v >. With a

slight modification to the construction proposed in [18] we

can prove the following interesting result.
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Fact 3 Assume the inductors and capacitors are linear and

passive and the circuit is topologically complete3. Then

q̇(t) = −2
[
˙̂
i
�
L v̇�

C

] [ ∇2G(iL) Γ
Γ� −∇2F (vC)

][
˙̂
iL

v̇C

]
,

where Γ ∈ R
nL×nC is a constant matrix (with elements

(1, 0,−1)) determined by the interconnection between the

inductors and capacitors. G(iL) and F (vC) are the content

and the co–content of the current–controlled resistors and

voltage–controlled resistors defined in [17].

Even though we have shown above that the resistors do

not intervene in the inner product <
˙̂
i, v > we see that

they contribute with sign–definite quadratic terms in the

time evolution of q(t)4. As pointed out in [18] the content

and co–content functions can be modified adding current

and voltage sources, which suggests a procedure to regulate

q(t) and henceforth modify the circuit cyclo–dissipativity.

Current investigation is under way to further analyze the

properties of this differential equation in some circuit con-

figurations of interest for PF compensation.

Fact 4 The cyclo–dissipativity condition <
˙̂
i,v >≥ 0 has

a clear energy interpretation for the case of linear L,C, but

possibly nonlinear resistors elements. We do not pursue

any further this topic here and only mention that for general

nonlinear RLC circuits: magnetic energy “much larger”
than electrical energy ⇒ cyclo–dissipativity with supply

rate
˙̂
i
�

v, electrical energy “much larger” than magnetic
energy ⇒ cyclo–dissipativity with supply rate i�v̇ [18].

4. Concluding remarks

The main contribution of the paper is the proof that a cer-

tain cyclo–dissipativity property of the compensated load,

namely (5), is necessary for PF improvement. This im-

portant observation suggests an analysis and compensator

design framework based on cyclo–dissipativity, which is a

natural alternative candidate to replace (standard) dissipa-

tivity for applications where we are interested in inducing

periodic orbits, instead of stabilizing equilibria.

Although the framework applies for general

polyphase—possibly unbalanced—circuits, for the sake of

clarity, we have presented in some detail the problem of PF

compensation with LTI capacitors or inductors of single

phase loads only. It is our belief that the full power of

the proposed approach will become evident for polyphase

unbalanced loads with (possibly nonlinear) general loss-

less compensators, where the existing solutions are far

from satisfactory [3]. It is not clear at this point whether

3basically, this means that all current–controlled and voltage–

controlled resistors are in series with inductors and in parallel with ca-

pacitors, respectively.
4A similar quadratic form, but with a more complicated “matrix”, is

obtained for the case of nonlinear inductors and capacitors [18].

this, unquestionably elegant, setting will yield practical

solutions. The main obstacle been that in this application

very little is known about the nature of the load—a piece

of information that is essential for a successful design.

Also, it would be highly desirable to formulate a clear

parameter minimization problem, in particular, for other

circuit topologies and poly–phase loads, where questions

like compensator circuit complexity, existence of the

optimal solution and sub–optimality could be addressed.
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