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Abstract—In this paper we design a novel control strat-
egy for a string of vehicles. The vehicles are coupled at the
control level such that each vehicle influences the behavior
of another vehicle resulting in self-organization of the ve-
hicle string: through this interaction a cooperative behavior
emerges and a platoon is formed. This contrasts with the
traditional control where an independent leader vehicle is
to be followed by the other vehicles.

The coupling structure under consideration is
unidirectional-ring coupling. In the unidirectional
ring, each vehicle regulates the distance with its immediate
forward neighbor to a given constant, and the first vehicle
in the platoon keeps its distance to the last vehicle constant.

The resulting behavior of the system is a platoon of vehi-
cles moving at a constant velocity with constant distances
between each pair of consecutive vehicles. Stability prop-
erties of the system are established and the concept of string
stability of a platoon is discussed and applied to the pro-
posed interconnection.

1. Introduction

In this paper the systems under study are vehicular pla-
toons. Such systems have gained importance over the
years, since they might offer a solution to the congestion
of highways in urban areas. The objective being a capacity
increase of the highway, these intelligent vehicle/highway
systems (IVHS) form strings of vehicles (so-calledpla-
toons) moving at a desired speed with desired distances be-
tween the vehicles. Several algorithms controlling a string
of vehicles have been proposed in the literature.

Ref. [3], [4] and [8] rank among the first to investigate
this problem and used an LQR approach. Contrary to [3]
and [4], most control strategies use tuning of parameters in
order to optimize some proposed controller. In most cases
the control is of leader-follower type: the leading vehicle
of the platoon moves at a desired speed; the other vehi-
cles receive information from the leading vehicle (position,
velocity, acceleration) either directly or indirectly through
other vehicles in the platoon. Flow of information is usu-
ally directed from the head of the platoon towards its tail
[6], [1]. In reference [2] one considers a platoon where
each vehicle only measures its distance with its immediate
forward neighbor and tries to obtain and maintain a desired
value for this distance. The leader vehicle drives at a de-
sired speed.

The present paper presents a novel interconnection
topology using identical controllers. As in [2], only sep-
aration distances are measured. The key property of the
interconnection is the absence of a master/leader vehicle
that determines the overall behavior of the platoon. All
vehicles interact with each other trying to satisfy their in-
dividual control objective. As a result of this cooperationa
platoon formation emerges. This resulting behavior and its
stability properties are investigated.

An important concept regarding the formation of vehicle
platoons isstring stability. A platoon is called string sta-
ble if the transient error in the separation distance between
vehicles does not grow as one proceeds down the line of
vehicles [7]. It is proved in [2] that the system cannot be
string stable when identical controllers are applied. Sim-
ulations suggest that the control discussed in the present
paper does yield a string stable system in practice.

2. System dynamics

2.1. System equations and equilibrium solution

Each vehicle is represented as a moving mass with sec-
ond order dynamics:

ẍi + pẋi = ui, i ∈ N , (1)

where xi represents the position of thei-th vehicle,ui is
the input to thei-th vehicle andp ≥ 0 is a parameter rep-
resenting the friction/drag coefficient per unit mass. The
mass of each vehicle is taken equal to one. We propose the
following control:

ui = ωi + K(xi−1 − xi − Li), i ∈ N , (2)

with K > 0 the coupling strength andωi > 0, L1 ≤ 0, Li ≥

0, i = 2, . . . ,N, real constants. Each vehicle attempts to
keep the distance between itself and its immediate forward
vehicle as close as possible to the set pointLi . The lead
vehicle tries to obtain a desired distance|L1| between itself
and the last vehicle of the platoon. At the same time, each
vehicle aims to drive at an imposed reference speedvi ,

ωi/p.

Theorem 1 Each functionϕ : R → RN; t 7→ ϕ(t) defined
by

ϕi(t) = αt + βi , ∀i ∈ N , (3)
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where

α =
ωm − KLm

p
, (4)

βi − βi−1 =
ωi − ωm

K
+ Lm − Li , (5)

with ωm ,
1
N

∑N
j=1ω j and Lm ,

1
N

∑N
j=1 L j , is a solution of

system (1)-(2).

Assume each vehicle is given a reference speed close to a
valuev0. In the ideal case each vehicle would receive a ref-
erence speed perfectly equal tov0 rendering the coupling
structure redundant. In a practical situation however, the
reference speeds will differ slightly from each other. If the
vehicles remain uncoupled in this situation, the group of
vehicles becomes dispersed. The coupling structure’s aim
is to keep the vehicles moving together in a highly struc-
tured way through self-organization. Each vehicle aban-
dons its goal to drive at the set speedvi in order to fall into
step with its forward and backward neighbors which move
at a speed different fromvi . The more the valuesvi differ
from each other, the larger the coupling strength has to be
to avoid collisions between vehicles when forming a coher-
ent platoon.

The coupling also allows control of the speed of the pla-
toon by varying the set pointsLi : by deliberately choos-
ing the set pointsLi such that their mean value is different
from zero, the string of vehicles starts to move at a con-
stant velocity which depends on this mean value and the
mean reference speed. Once the set points have been fixed,
the self-regulatory property of the system ensures the re-
sulting motion is a platoon moving at the desired velocity.
This contrasts with the supervisory type of control of clas-
sical look-ahead interconnections where a driver controls
the lead vehicle and the consecutive vehicles try to follow.

2.2. Remarks

The functiont 7→ ϕi(t) represents the evolution of the
position of thei-th vehicle. Each solutionϕ represents a
string of vehicles moving at a constant velocity given by
(4) with distances between consecutive vehicles defined by
(5). The system equations are invariant under the change
of coordinates

x→ x+ γ
[

1 0 1 0 · · · 1 0
]T
, ∀γ ∈ R. (6)

In other words, the dynamics are invariant under transla-
tions of the origin in the physical space. This invariance is
reflected in the spectrum of the system matrixA describ-
ing the system (1)-(2): the matrixA possesses at least one
zero-eigenvalue, independent of the parameter values.

The solutions of (1)-(2) have two undesirable properties.
First, the separation distances between consecutive vehi-
cles do not converge to the set pointsLi . However, by (5)
it is possible to compute the distances which the platoon
converges to. Vice versa, if desired valuesδi , βi−1− βi for
the separation distances are given, equation (5) allows us

to calculate the necessary set pointsLi . The second disad-
vantage of system (1)-(2) is that the equilibrium solutions
are only stable for sufficiently small coupling strengths (see
Section 3). This results in a very slow decay of the transient
behavior.

3. Stability analysis

In this section the stability of the equilibrium solution as
a function of the coupling strength is investigated. In or-
der to establish the stability properties of (3), the following
change of coordinates is performed:

xi = αt + βi + zi ,

whereα andβi are defined by (4) and (5). This results in a
set of system equations of the form

ż= Az. (7)

It can be shown that the system (7) possesses the same
translation invariance (6) as the original system. Asymp-
totic stability of the system is determined by the location
of the eigenvalues ofA, which leads to the following theo-
rem.

Theorem 2 If and only if

K <
p2

2 cos2(π/N)
(8)

the system (1)-(2) is asymptotically stable.

If the number of vehicles tends to infinity, the upper
bound onK for stability determined by (8) decreases and
converges to the valuep2/2. This yields a sufficient condi-
tion for asymptotic stability.

Theorem 3 If 0 < K < p2/2, system (1)-(2) is asymptot-
ically stable, irrespective of the number of vehicles in the
system.

Example:

Consider system (1)-(2) with 3 vehicles and drag coef-
ficient p = 2. The eigenvalues of the corresponding sys-
tem matrixA are plotted in Figure 1 as a function ofK.
When the vehicles are uncoupled, three eigenvalues are lo-
cated at−p; the remaining three eigenvalues are located at
the origin. WhenK increases two of the latter eigenvalues
move into the open left half plane while two of the eigen-
values located in−p start to move towards the imaginary
axis. The sum of all eigenvalues is−3p, irrespective of
the valueK. For all valuesK > 0 there is one eigenvalue
at the origin and one in−p. When the coupling strength
exceeds the valuep2/4 the two rightmost eigenvalues dif-
ferent from zero start to move towards the imaginary axis
until at K = 2p2 they cross the imaginary axis simultane-
ously, rendering the system unstable.
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Figure 1: The spectrum of the system consisting of three
vehicles

4. String stability

In this sectionstring stability is discussed with respect
to the proposed interconnection structure. For simplicity,
it is assumed thatωi = 0,∀i ∈ N. For a general treat-
ment of the concept of string stability the reader is referred
to [7], where infinite interconnections of a class of nonlin-
ear systems are considered. In practice, however, a vehicle
platoon always consists of a finite number of vehicles. A
string of vehicles is called string stable if disturbances are
attenuated as they propagate down the string [5].

Definition 1 Let ei be the distance error between the i-th
and(i − 1)-th vehicle: ei(t) = xi(t) − xi−1(t) − Lm+ Li . The
platoon is called string stable if

‖ei(t)‖∞ < ‖ei−1(t)‖∞, ∀i > 1,

where‖ei(t)‖∞ denotessupt≥0 |ei(t)|.

The initial values of the distance errors satisfy some restric-
tions:

• At first, from the definition ofei it follows that

N
∑

j=1

ej(t) = 0, ∀t ∈ R.

• Secondly, each equilibrium solution of (6) has the
property thatxi−1(t) > xi(t), i , 1. In order to avoid
collisions, only initial conditions are considered with
vehicle positions satisfyingxi−1(0) > xi(0), i , 1.

• Thirdly, we impose the extra assumption that chang-
ing the valuesLi is applied to a platoon driving at con-
stant velocity, implying ˙ei(0) = 0,∀i ∈ N. By ad-
justing the parametersLi the platoon is steered from
one equilibrium solution to another. The manoeuvres
included are speeding up, slowing down and starting
from a standstill.

Assume that for timet < 0 the platoon is at an equilib-
rium solution, i.e.xi(t) − xi−1(t) =

(

1
N

∑N
j=1 L j

)

− Li , ∀i ∈

N , ∀t < 0. At t = 0 the set pointL1 is replaced bỹL1. For
positive time the platoon behavior can be described by

ëi + pėi = K(ei−1 − ei), ∀i ∈ N . (9)

with

ei , xi − xi−1 −

















1
N

N
∑

j=1

L̃ j

















+ L̃i , i ∈ N ,

where L̃i = Li ,∀i ∈ N \ {1}. The corresponding initial
condition is given by











































e1(0) =
N − 1

N
(L̃1 − L1),

ei(0) =
L1 − L̃1

N
, ∀i ∈ N \ {1},

ėi(0) = 0, ∀i ∈ N .

In Figure 2, system (1)-(2) is simulated withN = 39,
L1 − L̃1 = −5, p = 10, K = 10. This corresponds to a
slowing down manoeuvre. The figure presents the evolu-
tion of the distance errorsei(t) over time. For reasons of
clarity of the picture, half of the distance errors, namely
those with even index, are omitted from the picture. The
figure suggests that the maximum distance error between
pairs of consecutive vehicles does not grow when proceed-
ing towards the tail of the platoon. This is made explicit by
the separate plots of Figure 3, where the first 4 separation
distance errors are displayed.

Figure 4 shows the distance errore4 over a longer time
period compared to Figure 3 and illustrates a typical fea-
ture of the interconnection topology: each distance error
rises quickly to its maximum value and then decreases to
a value close to zero, but, contrary to leader follower con-
trol, after some time each distance error starts to riseagain.
It decreases again to some value near zero. This rising
and decreasing is repeated periodically over time. As time
evolves, the time it takes for an error to rise and fall down
again increases, while the peak value decreases. One could
interpret this as if there was a Mexican wave in the er-
ror value moving around in the platoon: when the wave
reaches the tail of the platoon, it reappears at the leader ve-
hicle. Notice that the Mexican wave continually decreases
in amplitude while moving around in the platoon.

5. Robustness

Assume that one of the vehicles starts to malfunction and
cannot reach the velocity required by the platoon at that
moment. In the case of leader-follower control this causes
the leading group of vehicles to abandon the group with
the malfunctioning vehicle as first vehicle, and therefore a
splitting of the platoon. The distance between both groups
increases without bound.
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Figure 2: Evolution of the separation distance errors for a
platoon of 39 vehicles.
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Figure 3: Separation distance errors of the first 5 vehicles.

With the interconnection topology of the present paper
all vehicles adapt to the “weakest link” and the platoon
starts to drive at the maximum velocity feasible by the mal-
functioning vehicle. This is illustrated on the right handside
plot of Figure 5: att = 80 s the speed of one of the vehi-
cles becomes bounded by 0.3 m/s. The distance between
the first and the second group remains bounded. There is a
splitting of the platoon but no abandoning. The left hand-
side plot shows the evolution of the platoon without mal-
functions. For reasons of clarity, only the positions of the
vehicles with an odd index are plotted.
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