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Abstract—In this presentation, a formalism for
system interconnection is proposed based on the idea is
that systems are interconnected by sharing variables.
We apply this to modeling by tearing and zooming.

1. Introduction

Systems, especially engineering systems, usually
consist of interconnections of subsystems. This feature
is crucial in both modeling and synthesis. The aim of
this presentation is to formalize interconnections and
to analyze the model structures that emerge.
From an applications point of view the input/output

framework is much more restrictive than one is often
led to believe. ‘Arrows’, signal flows, dominate sys-
tems theory in engineering. There are many situations,
for instance in signal processing where the signal flow
graph structure is eminently appropriate. However,
the architecture formalized by the signal flow arrows
is often viewed as being an essential aspect of describ-
ing the interaction of a system with its environment.
But, the opposite is actually the case, especially for
the description of physical systems and for describing
their interconnections. In many situations, signal flow
graphs they are unphysical, a figment of the imagina-
tion, cumbersome, and unnecessary. Sharing common
variables is a much more key idea for system intercon-
nection than input-to-output connection.

2. Behavioral systems

Over the last two decades, a framework for the study
of systems has been developed that does not take the
input/output structure as its starting point. The ‘be-
havioral approach’, as this has been called [7, 4], sim-
ply identifies the dynamics of a system with a family of
trajectories, called the behavior, and develops systems
theory (including control [8]) from there.
The behavioral framework views modeling as fol-

lows. Assume that we have a phenomenon that we
wish to describe mathematically. Nature (that is, the
reality that governs this phenomenon) can produce
certain events (also called outcomes). The totality
of possible events (before we have modelled the phe-
nomenon) forms a set U, called the universum. A

mathematical model of the phenomenon restricts the
outcomes that are declared possible to a subset B

of U;B is called the behavior of the model. We re-
fer to (U,B) (or to B by itself, since U usually fol-
lows from the context) as a mathematical model. As
an example, consider the ideal gas law, which poses
PV = kNT as the relation between the pressure P ,
the volume V , the number N of moles, and the tem-
perature T of an ideal gas, with k a universal physical
constant. The universum U is (R+)

4, and the behavior
B = {(P, V,N, T ) ∈ (R+)

4|PV = kNT}.

In the study of dynamical systems we are, more
specifically, interested in situations where the events
are signals, trajectories, i.e. maps from a set of in-
dependent variables (time, in the present paper) to a
set of dependent variables (the values taken on by the
signals). In this case the universum is the collection of
all maps from the set of independent variables to the
set of dependent variables. It is convenient to distin-
guish these sets explicitly in the notation: T for the set
of independent variables, and W for the set of depen-
dent variables. T suggests ‘time’, the case of interest
in the present article. Whence a (dynamical) system
is defined as a triple

Σ = (T,W,B)

with B, the behavior, a subset of WT (WT is the stan-
dard mathematical notation for the set of all maps
from T to W). The behavior is the central object in
this definition. It formalizes which signals w : T → W
are possible, according to the model: those in B, and
which are not: those not in B. The behavioral frame-
work treats a model for what it is: an exclusion law. Of
course, in applications, the behavior B must be spec-
ified somehow, and it is here that differential equa-
tions (and difference equations for discrete-time sys-
tems) enter the scene.

In the equations describing systems, very often other
variables appear in addition to those whose behavior
the model aims at describing. The origin of these
auxiliary variables varies from case to case. They
may be state variables (as in flows, automata, and
input/state/output systems); they may be potentials
(as in the well-known expressions for the solutions of
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Maxwell’s equations); most frequently, they are inter-
connection variables. It is important to incorporate
these variables in our modeling language ab initio, and
to distinguish clearly between the variables whose be-
havior the model aims at, and the auxiliary variables
introduced in the modeling process. The former are
called manifest variables, and the latter latent vari-
ables.
A mathematical model with latent variables is de-

fined as a triple (U,L,Bfull) with U the universum
of manifest variables, L the universum of latent vari-
ables, and Bfull ⊆ U × L the full behavior. It induces
(or represents) the manifest model (U,B), with B =
{w ∈ U | there exists ` ∈ L such that (w, `) ∈ Bfull}.
A (dynamical) system with latent variables is defined
completely analogously as

Σfull = (T,W,L,Bfull)

with Bfull ⊆ (W × L)T. The notion of a system with
latent variables is the natural end-point of a modeling
process and hence a very natural starting point for
the analysis and synthesis of systems. Latent variables
enter also very forcefully in representation questions.
The procedure of modeling by tearing and zooming

is an excellent illustration of the appropriateness of the
behavioral approach as the supporting mathematical
language. We assume throughout finiteness, i.e., that
we interconnect a finite number of modules (subsys-
tems), each with a finite number of terminals, etc. Of
course, there are many interconnections that do not
fit this ‘terminal’ paradigm: actions at a distance (as
gravity), rolling objects, mixing, components that are
interconnected through distributed surfaces, etc.

3. Tearing and zooming

The building blocks, called modules, of an intercon-
nected system are systems with terminals. Each of
these terminals carries variables from a universum, and
the (dynamical) laws that govern the module are ex-
pressed by a behavior that relates the variables at the
various terminals. Finally, the terminals of the mod-
ules are assumed to be interconnected, expressed by an
interconnection architecture. The interconnection ar-
chitecture imposes interconnection relations between
the variables on these terminals.

After interconnection, the architecture leaves some
terminals available for interaction with the environ-

ment of the overall system. The behavior of the in-
terconnected system consists of the signals that sat-
isfy both the module behavior laws and the intercon-
nection constraints. In specifying the behavior of an
interconnected system, we consider the variables on
the interconnected terminals as latent variables, and
those on the terminals that are left for interaction with
the environment as manifest variables. We may think
of the interconnected variables internal variables, and
the exposed variables external variables. It is impor-
tant to note immediately the hierarchical nature of
this procedure. The modules thus become subsystems.
The paradigmatic example to keep in mind is an elec-
trical circuit. The modules are resistors, capacitors,
inductors, transformers, etc. The terminals are the
wires attached to the modules and are electrical ter-
minals, each carrying a voltage (the potential) and a
current. The interconnection architecture states how
the wires are connected. We now formalize all this, as-
suming that we are treating continuous time dynami-
cal systems (hence, with time set T = R).

4. Terminals and modules

A terminal is specified by its type. Giving the type
of a terminal identifies the kind of a physical terminal
that we are dealing with. The type of terminal implies
a universum of terminal variables. These variables
are physical quantities that characterize the possible
’signal states’ on the terminal, it specifies how the
module interacts with the environment through this
terminal. Some examples of terminals are given in the
table below.

Type of terminal Variables Universum

electrical (voltage, current) R × R
1-D mechanical (force, position) R × R
2-D mechanical (position, attitude, R2 × [0, 2π)

force, torque) ×R2 × R
thermal (temperature, heat flow) R+ × R
fluidic (pressure, flow) R × R

m-dim. input (u1, u2, . . . , um) Rm
p-dim. output (y1, y2, . . . , yp) Rp

etc. etc. etc.

A module is specified by its type, and its behavior.
Giving the type of a module identifies the kind of a
physical system that we are dealing with. Giving a be-
havior specification of a module implies giving a repre-
sentation and the values of the associated parameters
a representation. Combined these specify the behav-
ior of the variables on the terminals of the module.
The type of a module implies an ordered set of termi-
nals. Since each of the terminals comes equipped with
a universum of terminal variables, we thus obtain an
ordered set of variables associated with that module.
The module behavior then specifies what time trajec-
tories are possible for these variables. Thus a mod-
ule defines a dynamical system (R,W,B) with W the
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Cartesian product over the terminals of the universa of
the terminal variables. However, there are very many
ways to specify a behavior (for example, as the solution
set of a differential equation, as the image of a differen-
tial operator, through a latent variable model, through
a transfer function, etc.). The behavioral representa-
tion picks out one of these. These representations will
then contain unspecified parameters (for example, the
coefficients of the differential equation, or the polyno-
mials in a transfer function). Giving the parameter
values specifies their numerical values, and completes
the specification of the behavior of the signals that are
possible on the terminals of a module.
Some examples of modules with their terminals are

given below.

Type of module Terminals Type of terminals

resistor (terminal1, terminal2) (electrical, electrical)

transistor (collector, emitter, (electrical, idem,
base ) idem)

mass, 2 applicators (appl1, appl2) (3-D mechanical, idem)

2-inlet vessel (inlet1, inlet2) (fluidic, fluidic)

heat exchanger (inlet, outlet) (fluidic-thermal, idem)

signal processor (input, output) (m-input, p-output)

etc. etc. etc.

Some examples of behavioral specifications are given
below (only to give an idea of what we have in mind).

Type of module Specification Parameter

resistor default R in ohms

n-terminal circuit transfer impedance G ∈ Rn×n(ξ)

n-port circuit i/s/o admittance (A,B,C,D)

bar, 2 applicators Lagrangian equations mass and length

2-inlet vessel default geometry

signal processor kernel representation R ∈ R•×•[ξ]

signal processor latent variable (R,M)

etc. etc. etc.

Formally, a system Σ of a given type with T termi-
nals yields W = W1 ×W2 × · · · ×WT , with Wk the
universum associated with the k-th terminal. The be-
havioral specification yields the behavior B ⊆ WR. If
(w1, w2, . . . , wT ) ∈ B, then we think of wk ∈ (Wk)

R

as a signal that can be realized on the k-th terminal.
As an example, consider an electrical component.

We view this as an device that can interact with its
environment through wires. These wires are the ter-
minals. With each terminal we associate two real vari-
ables, the potential V and the current I (agreed to be
positive when electrical current flows into the device).
The laws of the device specify the behavior, which is
thus be a subsetB of (R2×R2×· · ·×R2)R = ((R2)t)R,
where t denotes the number of terminal wires. Usually,
the behavior B will have to satisfy certain restrictions
in order for it to qualify as the behavior of an elec-
trical device. For example, Kirchhoff’s current law
and Kirchhoff’s voltage law. These can be expressed
as stating that ((V1, I1), . . . , (Vt, It)) ∈ B must im-
ply I1 + I2 + · · · + It = 0 and ((V1 + α, I1), . . . , (Vt +
α, It)) ∈ B for all α : R → R. There may be
other requirements, as passivity, etc. The behavior
B ⊆ (R2×R2×· · ·×R2)R = ((R2)t)R can be specified
in many ways. The circuit could be a three terminal
Y or ∆ in which case giving the value of 3 resistors is

needed to specify the behavior. Or it is a transformer,
in which case giving the turns ratio suffices. Or the
behavior is a differential equation, with or without la-
tent variables, or it is given in kernel representation, or
as a transfer function. We can further think of giving
the behavior in terms of port variables, etc.

5. Interconnection architecture

An interconnected system is composed of modules,
its building blocks. They serve as subsystems of the
overall system. Each module specifies an ordered set
of terminals. By listing the modules, and the asso-
ciated terminals, we obtain the Cartesian product of
all the terminals in the interconnected system. The
manner in which these terminals, and hence the asso-
ciated modules, are interconnected is specified by the
interconnection architecture. This consists of a set of
disjunct pairs of terminals, and it is assumed that each
such pair consists of terminals of adapted type. Typ-
ical ’adapted’ type means that they are of the same
physical nature: both electrical, or both 1-D mechan-
ical, both thermal, etc. But, when the terminal serves
for information processing (inputs to actuators, output
of sensors) it could also mean that one variable must
be an input to the module to which it is connected
(say, the input of an actuator), and the other must be
an output to the module to which it is connected (say
the output of a sensor).
The interconnection architecture involves only the

terminals of the modules and their type, but not the
behavior itself. Also, the union of the terminals over
the pairs that are part of the interconnection architec-
ture will in general be a strict subset of the union of
the terminals of all the modules. We call the terminals
that are not involved in the interconnection architec-
ture the external (or exposed) terminals. It is along
these terminals that the interconnected system can in-
teract with its environment. The terminals that enter
in the interconnection architecture are called internal
terminal. It is along these terminals that the modules
are interconnected.

6. Interconnection laws

Pairing of terminals by the interconnection architec-
ture implies an interconnection law. Some examples of
interconnection laws are shown below.

Pair of Variables Variables Interconnection

terminal terminal 1 terminal 2 constraints

electrical (V1, I1) (V2, I2) V1 = V2, I1 + I2 = 0

1-D mechanical (F1, q1) (F2, q2) F1 + F2 = 0, q1 = q2
thermal (Q1, T1) (Q2, T2) Q1 + Q2 = 0, T1 = T2
fluidic (p1, f1 (p2, f2) p1 = p2, f1 + f2 = 0

information m-input u m-output y u = y

processing

etc. etc. etc. etc.

The physical examples of interconnection laws all
involve equating of ‘across’ variables and putting the
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sum of ‘through’ variables to zero. This is in con-
trast to the input-output identification for informa-
tion processing terminals. The latter is actually the
only interconnection used in flow diagram based mod-
eling, as implemented, for example, in MATLAB’s
SIMULINK c©. It is based on the input/output think-
ing that permeates systems theory and control. Un-
fortunately, this is of limited interest for modeling in-
terconnected physical systems. The ideas developed
in the bond-graph [3] or port Hamiltonian systems
[5, 6] literature and the modeling packages that use
this philosophy are bound to be much more useful in
the long run. Interconnection of physical systems in-
volves across and through variables, efforts and flows,
extensive and intensive quantities, and not in first in-
stance flow diagrams. These considerations are the
main motivation for the development of the behavioral
approach.
The resulting graph structure of an interconnected

system has the modules in the nodes and the inter-
connections as the branches. This follows the physics,
and should be contrasted with the graph structure pur-
sued in electrical circuit theory, which has the modules
in the branches and the elements connections as the
nodes. This structures works fine with 2-terminal el-
ements, but is awkward otherwise, and is difficult to
generalize to other, non-electrical, domains.

7. Interconnected behavior

We now formalize the interconnected system. The
most effective way to proceed is to specify it as a latent
variable system, with as manifest variables the vari-
ables associated with the external terminals, and as la-
tent variables the internal variables associated with the
terminals that are paired by the interconnection archi-
tecture. The universum of manifest variables equals
W = We1

× · · · × We|E| , where E = {e1, . . . , e|E|}
is the set of external terminal. The universum of la-
tent variables equals L = Wi1 × · · · × Wi|I| , where
I = {i1, . . . , i|I|} is the set of internal terminals. Its
full behavior behavior consists of the behavior as spec-
ified by each of the modules, combined by the intercon-
nection laws obtained by the interconnection architec-
ture. The behavior of each of the modules involves a
combination of internal and external variables that are
associated with the module. The interconnection law
of a pair in the interconnection architecture involves
the internal variables associated with these terminals.
A first principles model of an interconnected system

always contains latent variables. That is one of the
main motivations to introduce latent variables in our
modeling language ab initio. It also underscores the
importance of the elimimation theorem [1, 2, 7].

8. Conclusions

Modeling interconnected via the above method of
tearing and zooming provides the prime example of
the usefulness of behaviors and the inadequacy of in-
put/output thinking. Even if our system, after in-
terconnection, allows for a natural input/output rep-
resentation, it is unlikely that this will be the case of
the subsystem and of the interconnection architecture.
It is only when considering the more detailed signal
flow graph structure of a system that input/output
thinking becomes useful. Signal flow graphs are useful
building blocks for interpreting information process-
ing systems, but physical systems need a more flexible
framework.
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