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Abstract—Energy-efficient control of bipedal walking
robots requires both minimization of mechanical energy
losses (often mainly due to impacts) and the use of natural
oscillations in a mechanism to minimize actuator torques
(as shown by research on passive dynamic walking). In
this paper, we discuss how these aspects can be analyzed
and optimized using mathematical models of the dynamics,
as opposed to using only engineering intuition and experi-
mental results. We use a simple planar three-link robot as
an example to illustrate the ideas.

1. Introduction

In research on bipedal walking robots, passive dynamic
walking has shown to be a promising approach in applica-
tions where efficiency of walking is important. Pure pas-
sive dynamic walking, meaning the natural walking mo-
tion of an unactuated mechanism on a slope (see for exam-
ple [1, 2, 3]), is in itself not very useful for applications,
since the lack of an active control system makes the walker
clearly uncontrollable. Still, it can serve as a starting point
for designing mechanisms and controllers that improve sta-
bility, robustness, and controllability, but that still rely on
the natural walking behavior of the mechanism itself, and
hence (hopefully) require little energy. Furthermore, sev-
eral approaches (such as [4]) explicitly use the knowledge
obtained in passive dynamic walking for control.

Instead of approaching the problem of efficient walking
by adaptation of pure passive walking down a slope, we can
also start from (traditional) actuated walking and use pas-
sivity and energy-efficiency ideas to optimize the walking
motions. When dealing with actuators, energy efficiency
has two aspects: first, the walking gait of the mechanism
should be such that little mechanical energy is lost (which
is due to friction and the collisions of the feet with the
ground). But secondly, practical actuators for robots can-
not absorb energy and hence will consume battery power
both when doing positive and negative mechanical work.

We propose the following strategy, illustrated in Fig-
ure 1, to accomplish this goal. When walking with a certain
gait using a traditional controller, energy will oscillate be-
tween the walking mechanism and the controller, as in Fig-
ure 1a. Since the (practical) actuators in the controller can-
not store energy, this energy is dissipated and hence needs
to be injected from a battery, leading to in-efficient motion.
Instead, looking at Figure 1b, we can use passive mechani-

(a) (b)

batterybattery

controller controllerrobot robot

springs

Figure 1: General idea of the presented approach: instead
of using a controller (a) that exchanges energy with the
robot and dissipates most of it, use passive mechanical ele-
ments such as springs (b) for the main energy exchange and
the controller only for robustness and higher-level control.

cal elements (such as springs) to function as temporal stor-
age elements during walking cycles, and let the controller
only act at a higher level of control, to increase stability and
robustness of the walking motion.

Gomes & Ruina [5] already showed that adding springs
can result in walking motions with (ideally) zero energy
cost. The approach we present here, though, is more gen-
eral: we do not search for trajectories for a given spring, but
use the springs as degrees of freedom in the search for effi-
cient trajectories. This way, the need disappears to have a
priori intuitive knowledge of where to place what springs.

We illustrate this approach on a simple planar straight-
legged robot with a trunk (upper body), described in Sec-
tion 2. In Section 3, we analyze the effect of changing the
mass distribution and trunk posture on the energy loss due
to impact, and we use a numerical optimization routine to
find suitable springs to minimize actuator torques. Finally,
we discuss the resulting walking motions and describe sev-
eral possible extensions for future research.

2. Model setup

We consider in this paper the example system of Fig-
ure 2: a robot consisting of two unit-length legs and a
unit-length trunk, with coordinates q as indicated. The dy-
namics of this mechanism can be modeled by the Euler-
Lagrange equations for mechanical systems with both ac-
tuation and constraint forces:

M(q)q̈ + C(q, q̇)q̇ + ∂qV (q) = τ + A(q)λ

AT (q)q̇ = 0
(1)
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Figure 2: A three-link mechanical walker and the defini-
tions of the coordinates and parameters.

in which M(q) is the mass matrix, C(q, q̇) describes Corio-
lis and centrifugal effects, V (q) is the total potential energy
with ∂qV its partial derivative with respect to q, and τ is
the vector of actuation and external torques. Furthermore,
AT (q)q̇ defines the vector of constrained velocities of the
system, and λ are the collocated constraint forces.

The constraint forces in this model are the ground con-
tact forces on both feet. When only the rear foot of Figure 2
is in contact with the ground, we have q2 = q̇1 = q̇2 = 0
and hence the model can be reduced to only three degrees
of freedom (q3, q4, q5). Then, when the front leg touches
the ground (q4 = −2q3), the horizontal and vertical veloc-
ity of the front foot point are instantaneously set to zero by
impulse forces λ acting on the front foot in the horizontal
and vertical direction. This can be described by the matrix

AT (q) =
[
1 0 0 cos(q3) 0
0 1 −2 sin(q3) − sin(q3) 0

]

On impact of the front leg, the constraint forces λ are such
that the velocities after impact satisfy the constraints on the
front leg, i.e. the front foot velocity is instantaneously zero.
We can compute the magnitude of the impulsive constraint
forces by integrating the dynamics (1) over the impact, and
assuming that the Coriolis and centrifugal effects and all
forces except λ are finite during the impact. This results
eventually in the expression

q̇(t+) =
(
I − M−1A(AT M−1A)−1AT

)
q̇(t−) (2)

which relates the velocity q̇(t−) just before impact to
the velocity q̇(t+) just after impact. Equation (2) de-
scribes a projection of the velocity along the columns of
M−1(q)A(q) onto the kernel of the matrix AT (q). Note
that the full five-dimensional mass-matrix is necessary to
obtain this projection operation; we cannot just use the re-
duced model equations in coordinates (q3, q4, q5).

The projection operation (2) not only affects the velocity
of the swing foot, but also the velocity (q̇1, q̇2) of the stance

foot. It can be shown that for most practical situations, the
vertical velocity q̇2 of the stance foot instantaneously be-
comes positive (away from the ground), which means that
the stance foot instantaneously becomes the swing foot,
and hence the double support phase of the walking mo-
tion is instantaneous. Moreover, if we are only interested
in walking gaits that are symmetric for the left and right
leg, we can relabel the joints immediately after impact, so
that q1 and q2 now describe the front foot, and q3, q4, and
q5 the appropriate angles such that the same configuration
as in Figure 2 is obtained, but now with the legs switched.

3. Optimization of the Mechanical Structure to Mini-
mize Actuator Torques

Using the model discussed in the previous section, we
now investigate how the mechanical structure of the robot
affects its walking behavior. More precisely, we discuss the
influence of the mass distribution and posture of the trunk
on the energy losses during impact, as well as the use of
mechanical springs to minimize actuator torques.

For both aspects, we choose the step length of the walk-
ing motion as 2 sin( 1

6 ) (which also fixes the initial condi-
tions for q3 and q4), leg masses as m = 1 kg, and the total
mass of the trunk as M1 + M2 = 5 kg. The distribution
between M1 and M2 as well as the step time T remain vari-
able. We make these choices to keep the example simple
and the equations manageable. The ideas of the following
section can still be used when the step size is not fixed,
and for example only a desired forward speed (ratio of step
length and step time) is given.

3.1. Change of Mass Distribution and Trunk Posture

From (2), we can find an expression for the loss of en-
ergy during impact, namely as

ΔUk :=
1
2
q̇T (t+)M(q)q̇(t+) − 1

2
q̇T (t−)M(q)q̇(t−)

= −1
2
q̇T (t−)

(
A(AT M−1A)−1AT

)
q̇(t−) (3)

This energy loss is hence a quadratic function in the veloc-
ity q̇ and depends on the posture of the mechanism and its
mass distribution.

The matrix A(AT M−1A)−1AT is a symmetric, positive
semi-definite quadratic form on q̇, and hence it can be char-
acterized by a singular value decomposition to find the ve-
locity directions of minimum and maximum energy loss.
This standard singular value decomposition would then de-
scribe the deformation of the unit sphere q̇T q̇ = 1 into an
ellipsoid under the operation of the quadratic form. How-
ever, the sphere q̇T q̇ = 1 has no physical meaning and
gives coordinate dependent results, so a much better and
physically intuitive decomposition is to study the effect of
the quadratic form on the velocities q̇ satisfying q̇T Mq̇ = 1
(a sphere in the metric M ), i.e. the velocities correspond-
ing to constant kinetic energy. This decomposition can be
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Figure 3: Singular values describing the energy loss on im-
pact for varying postures q5 and mass ratios M1 : M2.

written as

A(AT M−1A)−1AT =

GT
(
G−T A(AT M−1A)−1AT G−1

)
G = GT UΣUT G

where G(q) is the Cholesky decomposition of M(q) (such
that M = GT G), Σ is the diagonal matrix of singular val-
ues, and U is an orthogonal matrix. The singular values Σ
describe the effect of the quadratic form UΣU T on unit-
vectors x, and if we parameterize these vectors as x = Gq̇,
then the same singular values describe the effect of the ma-
trix A(AT M−1A)AT on velocities q̇ satisfying

1 = xT x = (Gq̇)T (Gq̇) = q̇T Mq̇

as desired. The columns of U T G describe the principle
directions q̇ corresponding to these singular values, i.e. the
velocities resulting in minimum and maximum energy loss
on impact.

By studying the effect of varying posture and mass dis-
tribution on the singular values, we can find what would be
the optimal choice for these parameters to minimize me-
chanical energy loss. Clearly, the real energy loss depends
mainly on the direction and magnitude of the velocity q̇.

Figure 3 shows a plot of the singular values Σ for vari-
ous mass distributions and trunk angles. It shows that all
singular values are between zero and one, which is clear
intuitively, since at most all energy and at least zero energy
is lost on impact. Furthermore, the smallest singular value
is zero for all parameters, and the corresponding column of

UT G is
[
0 0 ∗

]T
, i.e. only a velocity q̇5 of the trunk.

This is also clear intuitively, since if the front foot strikes
the ground with zero velocity, indeed the contact forces and
the resulting energy loss are equal to zero. Finally, the fig-
ure shows that the effect of mass distribution and posture
is ambiguous: variations of the parameters result in the in-
crease of one singular value and the decrease of another.

3.2. Optimization Using Mechanical Springs

As described in Section 1, efficiency of the walking mo-
tion can be increased by using mechanical springs (in addi-
tion, i.e. in parallel, to the actuators) that provide reversible
storage of energy during the normal walking cycle 1. We
now describe a way to find the optimal joint motion and
the optimal parameters for these springs, i.e. those that
minimize the actuator torque requirements during a step.
We describe the cost associated with these torques as the
approximation of

∫ T

0
τ2dt by a Riemann sum, i.e. as

J =
T

N

N∑
i=1

τT (ti)τ(ti) (4)

for some large enough N (we chose N = 50). Other cost
functions can be chosen instead, for example to penalize
ankle torque or peak torque requirements.

We set up the optimization problem as follows. First, we
parameterize the joint trajectories of q3, q4, and q5 as fixed-
order polynomial functions of time from the beginning to
the end of a step. Second, we parameterize the set of al-
lowed springs. For simplicity, we choose here to take two
linear springs (with unknown stiffness k1 and rest length
x0) between the two legs and the trunk, as well as one lin-
ear spring between the two legs (with unknown stiffness k2

and zero rest length for symmetry reasons). The parame-
ters k1, k2, x0 of the springs, together with the step time
and the coefficients of the polynomials describing the joint
trajectories, are the degrees of freedom in the optimization.

Thirdly, we set up the constraints that the solution of the
optimization problem must satisfy. These constraints en-
sure that the springs have positive stiffness, that the trunk
remains close to upright (it does not swing downward be-
tween the legs), and that the positions and velocities at the
end of a step (after impact and relabeling) are the same as
the positions and velocities at the beginning of a step. No
explicit initial and final velocities are enforced, only the
compatibility relation from the end of a step to the begin-
ning of the next step.

The resulting problem of minimizing (4) is then solved
using the Sequential Quadratic Programming (SQP) al-
gorithm implemented in Matlab [6]. The initial search
point is simply chosen as q3(t) ≡ q4(t) ≡ q5(t) ≡ 0,
k1 = k2 = x0 = 0, M2 = 5, and T = 1. For this example,
a (local) optimum was found using a tenth-order polyno-
mial. Figure 4 shows the resulting walking motion, and
Table 1 gives the corresponding spring and mass parame-
ters.

4. Discussion and Conclusions

The simulation and optimization show that the use of the
springs has resulted in small actuator torques; running the

1This idea requires the actuators to be back-driveable, such that they
can be freely moved in parallel to the springs without generating a torque.

483



0.0

0.2

-0.2

0.0 0.2 0.4 0.6

q3
q4
q5

t (s)

an
gl

es
(r

ad
)

Figure 4: Optimal walking motion minimizing actuator
torques when the springs and masses are as in Table 1.

Table 1: Optimal structural parameters minimizing actua-
tor torque, resulting in the motion of Figure 4.

symbol description value unit
T step time 0.702 s

M1 hip mass 4.71 kg
M2 head mass 0.29 kg
k1 trunk spring stiffness 0.0035 Nm/rad
k2 leg spring stiffness 0.234 Nm/rad
x0 trunk spring rest length 5.34 rad

same optimization scheme while keeping the springs equal
to zero resulted in a roughly double cost J as well as a
larger step time. The fact that still some actuator torque
remains (while in [5] a torque-free walking cycle was ob-
tained) is mainly due to the chosen initial estimate (all
joints equal to zero) for the optimization routine. The tra-
jectory in [5] contains a reasonably high-frequency, high-
amplitude oscillation of the trunk, which is not very close
to the chosen initial estimate.

The optimized trunk position and mass distribution of
Figure 4 and Table 1 show that the trunk leans slightly for-
ward, and almost all mass is positioned at the hip. This
results in a 13% kinetic energy loss on impact, which is
slightly below the middle singular value of Figure 3. The
optimal parameters for the springs suggest to include a con-
stant torque spring between the trunk and the legs, as well
as a linear spring between the legs.

The example shows that the optimization procedure re-
sults in natural looking motions without the need for a pri-
ori intuitive knowledge about suitable initial conditions and

spring parameters. Although intuition can clearly help to
reduce the number of parameters in the optimization, nu-
merical techniques can help in fine-tuning the remaining
parameters.

The presented method can be generalized, for example
to include knees, arms, and three-dimensional (as opposed
to planar) motion. When using knees with kneecaps, poly-
nomial functions may not be able to capture the stiff dy-
namics of the knee impact, and hence it may be useful to
use piecewise polynomial functions instead (with a non-
smooth connection point at the time of knee impact).

As in all non-convex optimization problems with non-
linear constraints, the algorithm may find locally optimal
solutions, or, especially for higher-dimensional problems,
no feasible solution at all. To prevent this, the optimal tra-
jectories obtained for simple robots could be used as an
initial guess for more complex robots. For example, the
trajectories for the robot in this paper can be used as initial
estimate for a planar robot with knees and arms (where the
joints for arms and knees could be initialized to zero).

Finally, we want to study variable speed walking, which
will most likely result in adjustable physical springs, with
different (nonlinear) stiffness for different walking speeds.
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