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Abstract—We consider the finite version of the Ku- [5] or the case of full synchronisation [1]. In this paper we
ramoto model. We prove that (for appropriate — butvill address a more general case, although for explicit an-
generic — parameter values)i@irent ‘regimes’ of partial alytic results we will still need to impose some conditions

entrainment can occur. on the parameters. We will prove that, under these condi-
tions, diferent ‘regimes’ of partial entrainment can occur,
1. Introduction which can be regarded as an extension of a result in [1].

In the next section we will review the solution proposed

The Kuramoto model [2] was introduced to investigatdy Kuramoto of the model with infinit&l as it is described
synchronisation in systems of coupled oscillators. A variin [3] and we briefly describe an example which we relate
ety of examples of such systems is described in [4]. Th® the finiteN model. Before investigating general entrain-
model consists of the following fierential equations for ment, we consider a system where two frequencies coin-
the phases() of the oscillators: cide and state a local stability result for small value&of
In section 4 we will find a lower bound for the coupling
strength for the entrainment of a given subset of the pop-
ulation of oscillators. This will allow us to find $icient
conditions for thew; that guarantee the existence of several

whereN is the number of oscillators in the Systeh]z Ois regimeS of partial entrainment forfterent intervals of the

the coupling strength and the are drawn from a distribu- coupling strength.

tion g. The parameters; represent the individual frequen-

cies of the oscillators that will determine the behaviour 0. kuramoto’s solution

the system foK = 0. By picturing the oscillators moving

around a circle (e.g. by plotting (céssing;) in a plane) We will consider a slightly more general setting than Ku-

it can be seen that the interaction betwedfiedent oscil- ramoto did by not restricting the distributianof the indi-

lators is attractive. The interaction will cause the averagvidual frequencies to be symmetric. We will look for a

frequencies of the oscillators to shift away from their in-solution of (1), forN — oo, for which there is a group

dividual frequencies towards those of the other oscillatorof oscillators, all moving at the same constant velo€lty

Kuramoto considered the limN — o and showed that, while the other oscillators are just moving around the eircl

if g is unimodal and symmetric about some frequef)gy with an average velocity fferent fromQy.

there is a critical valu&. of the coupling strength above The model with infiniteN is best described in terms of

which a solution exists exhibiting partial synchronisatio a population density(6, w, t) where the values fo# have

[3]. ForK > K. this solution is characterised by twdidr- to be considered modular2The fraction of the population

ent groups of oscillators; those in the first group are lockedf oscillators with an individual frequency equal doand

at the fixed frequencf2 while the other oscillators are drift- a phase value betweehand6 + dd (modulo Zr) at time

ing around the circle with (average) frequenciefedent t equalsp(8, w, t)dd for infinitesimally small values of @

from Q. The stability properties of this solution are notThis implies thatfjr dop(6, w,t) = 1, Vo, t.

fully understood yet. In the next section we will give a The substitutiors; = 6] — Qot in (1) leads to dieren-

more detailed description of the solution. tial equations of the same form and thus we can simply put
The assumptions Kuramoto made about the distributiof?g = 0, while replacingy by § with §(w) = 9(Qo+w), with-

do not help anymore when trying to analyse the model fasut changing the essential dynamics of the system. The

finite N. Analytical results are hard to obtain and mostly resynchronised group how moves at zero velocity, which al-

fer to special cases such as identical individual frequesncilows us to look for a stationary solution.

, K .
eizwi+ﬁj;sm(9j—ei), Vie{l...,N}, (1)
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The system (1) can be rewritten as
6 =w +Krsing—6), VYie{l....N}, (2

by definingr andy by

re =

N
>en, A3)
=1

Zl -

or, with w = Kr siné,

r=Kr | dog(Kr sin6) coe.

_z
2

11)

The solutiorr =0 (p = %) corresponds with total incoher-
ence (every oscillator moves at its individual frequency).
There will be another solution farto (11) wherK is large
enough, and since

The parameter can be seen as some kind of order param-

eter, since when all oscillators are close togetheuill be

large and when they are spread uniformly over the interval

[-m, ) r will be zero. Note that in generalandy will

2 . n
1=K | dog(Krsing)cos g < K3 maxg

12)

x
2

be time-dependent, but since we will look for a stationarywe need at leadt > ]ﬁ for this. To ensure that these
solution we assume them to be constant. The substitutigalues for correspond to stationary densities, we still need
6 = 6/ + ¢ in (1) again doesn’t really change the dynamicso impose the continuum version of (3) (with= 0). The

of the system and thus we can put O.

real part is fulfilled by (7), the imaginary part will deter-

If we let v(6, w, t) represent the velocity of an oscillator mine the value 0f)y and is equivalent to

with individual frequencyw and phasé at timet (corre-
sponding withg; in (1)) then the evolution op is deter-
mined by the continuity equation

o __olpy)
o 00 “)

For a stationary densigyit follows that whenevev(d, w) =
v(6, w, t) is nowhere zero for a fixe@d and varying, then
C(w)
v(6, w)’

p(0, w,1) = p(6, w) = (5)

whereC is some function only depending anthat will be
determined by the normalisatiofj; dop(0, w,t) = 1. The
velocity v is given by

V(0, w) = w — Kr sing, (6)
with . i
r= f dwd(w) f ddp(0, w) cosh, @)
and thus can be calculated as

1 w? - (Kr)?2

21 |w — Kr sing|’ (8)

P, w) =

—+00 T
f dwg(Qp + w) f dop(6, w) sind = 0. (13)

If gis symmetric abouf then forQq = Q this equation is
automatically fulfilled because of the antisymmetry of the
integrand under the substitution,) < (-w, —6).

In general we can expect the following to happen. For
small values oK the incoherent state prevails and every
oscillator moves around the circle at its own individuat fre
quency. WherK is risen above a certain critical value
(equal to—_2, whereQo can be determined by solving
(13) for smaﬁ) valueKr) a group of oscillators with fre-
quencies in the intervaf]y — Kr, Qo+ Kr] (r given by (12))
will synchronise. AK grows the size of the synchronised
group grows. Dependent on the form of the distribution it is
possible that another synchronised group arises, Whisn
increased. However, the previous calculations do not hold
anymore for two dferent synchronised groups and the crit-
ical value forK for the appearance of the second group will
probably be more dicult to derive. WherK is risen fur-
ther other groups can arise or groups can merge with each
other into a synchronised group that will again grow with
K. Although the previous calculations do not rigorously
imply this process (the stability has not been investigated
and only one synchronised group was considered) simula-

for Jw| > Kr. Forjw| < Kr the stationarity requires that tions (with a finite number of oscillators) indicate thatsthi
sing = - of which we take the attractive solution satisfy-js \hat actually happens.

ing6 € [-3, 3]

(0, w) = 5(9 - arcsir(%)), ©)

for lw| < Kr. When inserting the value fgr in equation

(7) forr the contribution of the part whete| > Kr cancels
out because of the antisymmetry of the integrand under i

substitutiord < & — 6, and thus

Kr

r= dwi(w) cos(arcsir(%)) , (10)

—Kr

Example. We consider the distributiog defined by

Jw) =2(1-w), VYwel0,1],

and zero outside [A]. We can numerically solve equa-
ions (12) and (13) to obtain the relation betwe€rand

r as given in figure 1. (The critical value fd¢ can be
calculated to bk, ~ 0.4096.) In figure 2 we keep the
coupling strength fixed & = 0.42 and we compare the
long term average velocities of the oscillators for infinite
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N with estimates obtained from simulations. For infifite Since as-function has a maximum of infinity, application
those values follow from the previous derivation (for thisof the previous result would indicate that for smigll> O
value ofK we calculated)y ~ 0.2421 andKr ~ 0.1999). there will beN synchronised groups, each corresponding
For the simulations we observed a population of 1000t one of thew; and representing a fractioﬁ of the en-
oscillators (with individual frequencies randomly choseriire population. This does not mean that those oscillators
out of the given distributiorg) over a time interval of move at a constant velocity. To know how the groups move
lengthT = 1000 with initial conditiong;(0) = 0, Yi. We  one would still have to solve (1). This behaviour suggests
used the Euler method with a time-step of 0.1 and thethat (for finiteN), oscillators with the same frequencies will
plotted 6;(T)/T versusw; for all i. Each diferent run is always synchronise. Of course, from théeliential equa-
represented by a dashed line, the solid line represents tiiens it follows for w; = wj that if 6 = 6; theng, = 6;,
(numerically computed) infinité&l case. implying that (on the circle) oscillatdrand j can not pass
each other, and thus their long term average frequencies
will be the same. Simulations (with finitd) also show
that if w; = wj thend; —6; — 0 (modulo Z). Although this
seems quite natural in such a system (where the interaction
is attractive), even the local stability properties of thbs
manifold6; = ; are already hard to investigate. However,
for smallK > 0 we have the following result (of which we
omit the proof).

Proposition 1 Assume thai; = w; = w for some i+ |,
bothin{1,...,N}. SetS={1,...,N}\ {i, j}. If wx # w,
Yk € S, then there exists an> 0, such thatVK € (0, €) the
submanifolds defined By = 6; + 2t m, me Z, are locally
asymptotically stable under the flow of (1).

L L L L L
0 05 1 15 2 25
K

This behaviour can be seen as a special case of partial en-

pling strengthk.
4. Partial entrainment

While in the case of infinité\ a solution may exist where
a group of oscillators is moving at the same velocity (at
all times), this is impossible for finit&l (if all individual
frequencies are fferent). However, there exist solutions
where all oscillators within a group. have bounded phase
] differences, i.e.

AC>0:]6i(t) - 6;(t)| <C, Vt>0,Vi, € Se

' 1 Definition. If this property holds for a non-empty proper
] subset of the population then we call the corresponding
] solution partially entrained with respect to this subset.

Note that according to this definition (which slightly dif-
fers from the one in [1]) there is always a trivial form of en-
trainment corresponding to the singletdiisc {1, ..., N}.
The following proposition gives a flicient condition for
the partial entrainment with respect to a suts&ethat con-
tains more than half of the population.

Figure 2: Long term average valuesvads a function ofv.
Solid line: infinite N case, numerically computed by (12)
and (13); dashed lines: simulation results.

Proposition 2 Let S, be a proper subset 1, .. ., N} with

3. Oscillators with equal frequencies M elements and such that M % Assume that
One way to relate the result of the previous section to the N [4M — 2N\? o
finite N model is by considering the distributignwith |‘Ui - wi| <K ™M (T) , Vi, jeSe
N
1 Then there exists a solution of (1) that is partially entexdn
== §w-w). 14
9(w) N ; (=) (14) with respectto S.
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Proof for the previous example), the coupling strengghis in-

For somea € (0, 7] let R, denote the region creased from ON different ‘regimes’ can be distinguished.
o Each regime can be determined by a partitiofilof. ., N}
Ra={0eRY:|6,—6;| <aVi,jeSe. of which every element is maximal entrained subset (it may

be a singleton). The fferent regimes correspond to suc-
cessive intervals foK. First, for small values oK, there
is no entrainment at all, all phasdigirences diverge for all
possible solutions. Above some critical value Koalmost
all* solutions exhibit entrainment of two oscillators. When
N K is increased above the next critical value either two other
-0, =w —wj - oK Sin(ei —9 ) Z Cos(gk _ Gt ) oscillators form a new entrained subset or a third oscilla-
N 2 | 2 tor joins the previous one. This process continues and can
generally be described as follows. For a fix€dalmost
all solutions show the same entrainment behaviour. When
by o+ 0 crossing a critical value fdk (while increasingK) two en-
Cos(é?k - - ') > cosa trained subsets (possibly singletons) merge into a new en-
2 trained subset, which is again the same for almost all Initia
conditions. AfterN — 1 transitions full entrainment occurs
fe\s described in [1].

We will find a value fora for which R, is a trapping region
for (1). Assume that for somg € R the solution of (1)
at timetp is located at the boundary &t;: 0 € R, and

6 — 6; = afor somei, j € Se. From (1) it follows that

In the summation we can bound the terms for wHichS,

. 6 +6; 6+ .
smce|0k— Al < a (In fact 'ak— %| < &, but this
bound would result in more complicated calculations.) |
0i+0;

k ¢ Se we only know that coé9k -2 ) > -1, and thus
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