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Abstract—We consider the finite version of the Ku-
ramoto model. We prove that (for appropriate — but
generic — parameter values) different ‘regimes’ of partial
entrainment can occur.

1. Introduction

The Kuramoto model [2] was introduced to investigate
synchronisation in systems of coupled oscillators. A vari-
ety of examples of such systems is described in [4]. The
model consists of the following differential equations for
the phases (θi) of the oscillators:

θ̇i = ωi +
K
N

N
∑

j=1

sin(θ j − θi), ∀i ∈ {1, . . . ,N}, (1)

whereN is the number of oscillators in the system,K ≥ 0 is
the coupling strength and theωi are drawn from a distribu-
tion g. The parametersωi represent the individual frequen-
cies of the oscillators that will determine the behaviour of
the system forK = 0. By picturing the oscillators moving
around a circle (e.g. by plotting (cosθi , sinθi) in a plane)
it can be seen that the interaction between different oscil-
lators is attractive. The interaction will cause the average
frequencies of the oscillators to shift away from their in-
dividual frequencies towards those of the other oscillators.
Kuramoto considered the limitN → ∞ and showed that,
if g is unimodal and symmetric about some frequencyΩ,
there is a critical valueKc of the coupling strength above
which a solution exists exhibiting partial synchronisation
[3]. For K > Kc this solution is characterised by two differ-
ent groups of oscillators; those in the first group are locked
at the fixed frequencyΩwhile the other oscillators are drift-
ing around the circle with (average) frequencies different
from Ω. The stability properties of this solution are not
fully understood yet. In the next section we will give a
more detailed description of the solution.

The assumptions Kuramoto made about the distribution
do not help anymore when trying to analyse the model for
finite N. Analytical results are hard to obtain and mostly re-
fer to special cases such as identical individual frequencies

[5] or the case of full synchronisation [1]. In this paper we
will address a more general case, although for explicit an-
alytic results we will still need to impose some conditions
on the parameters. We will prove that, under these condi-
tions, different ‘regimes’ of partial entrainment can occur,
which can be regarded as an extension of a result in [1].

In the next section we will review the solution proposed
by Kuramoto of the model with infiniteN as it is described
in [3] and we briefly describe an example which we relate
to the finiteN model. Before investigating general entrain-
ment, we consider a system where two frequencies coin-
cide and state a local stability result for small values ofK.
In section 4 we will find a lower bound for the coupling
strength for the entrainment of a given subset of the pop-
ulation of oscillators. This will allow us to find sufficient
conditions for theωi that guarantee the existence of several
regimes of partial entrainment for different intervals of the
coupling strength.

2. Kuramoto’s solution

We will consider a slightly more general setting than Ku-
ramoto did by not restricting the distributiong of the indi-
vidual frequencies to be symmetric. We will look for a
solution of (1), forN → ∞, for which there is a group
of oscillators, all moving at the same constant velocityΩ0

while the other oscillators are just moving around the circle
with an average velocity different fromΩ0.

The model with infiniteN is best described in terms of
a population densityρ(θ, ω, t) where the values forθ have
to be considered modulo 2π. The fraction of the population
of oscillators with an individual frequency equal toω and
a phase value betweenθ andθ + dθ (modulo 2π) at time
t equalsρ(θ, ω, t)dθ for infinitesimally small values of dθ.
This implies that

∫ π

−π
dθρ(θ, ω, t) = 1,∀ω, t.

The substitutionθi = θ′i − Ω0t in (1) leads to differen-
tial equations of the same form and thus we can simply put
Ω0 = 0, while replacinggby g̃with g̃(ω) = g(Ω0+ω), with-
out changing the essential dynamics of the system. The
synchronised group now moves at zero velocity, which al-
lows us to look for a stationary solution.
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The system (1) can be rewritten as

θ̇i = ωi + Kr sin(ψ − θi), ∀i ∈ {1, . . . ,N}, (2)

by definingr andψ by

reiψ
=

1
N

N
∑

j=1

eiθ j . (3)

The parameterr can be seen as some kind of order param-
eter, since when all oscillators are close together,r will be
large and when they are spread uniformly over the interval
[−π, π) r will be zero. Note that in generalr andψ will
be time-dependent, but since we will look for a stationary
solution we assume them to be constant. The substitution
θi = θ

′
i + ψ in (1) again doesn’t really change the dynamics

of the system and thus we can putψ = 0.
If we let v(θ, ω, t) represent the velocity of an oscillator

with individual frequencyω and phaseθ at time t (corre-
sponding withθ̇i in (1)) then the evolution ofρ is deter-
mined by the continuity equation

∂ρ

∂t
= −

∂(ρv)
∂θ

. (4)

For a stationary densityρ it follows that wheneverv(θ, ω) =
v(θ, ω, t) is nowhere zero for a fixedω and varyingθ, then

ρ(θ, ω, t) = ρ(θ, ω) =
C(ω)

v(θ, ω)
, (5)

whereC is some function only depending onω that will be
determined by the normalisation

∫ π

−π
dθρ(θ, ω, t) = 1. The

velocity v is given by

v(θ, ω) = ω − Kr sinθ, (6)

with

r =
∫

+∞

−∞

dωg̃(ω)
∫ π

−π

dθρ(θ, ω) cosθ, (7)

and thusρ can be calculated as

ρ(θ, ω) =
1
2π

√

ω2 − (Kr)2

|ω − Kr sinθ |
, (8)

for |ω| > Kr. For |ω| ≤ Kr the stationarity requires that
sinθ = ω

Kr of which we take the attractive solution satisfy-
ing θ ∈ [− π2 ,

π
2 ].

ρ(θ, ω) = δ
(

θ − arcsin
(

ω

Kr

))

, (9)

for |ω| ≤ Kr. When inserting the value forρ in equation
(7) for r the contribution of the part where|ω| > Kr cancels
out because of the antisymmetry of the integrand under the
substitutionθ ↔ π − θ, and thus

r =
∫ Kr

−Kr
dωg̃(ω) cos

(

arcsin
(

ω

Kr

))

, (10)

or, withω = Kr sinθ,

r = Kr
∫ π

2

− π
2

dθg̃(Kr sinθ) cos2 θ. (11)

The solutionr = 0 (ρ = 1
2π ) corresponds with total incoher-

ence (every oscillator moves at its individual frequency).
There will be another solution forr to (11) whenK is large
enough, and since

1 = K
∫ π

2

− π
2

dθg̃(Kr sinθ) cos2 θ ≤ K
π

2
maxg̃ (12)

we need at leastK ≥ 2
πmaxg̃ for this. To ensure that these

values forr correspond to stationary densities, we still need
to impose the continuum version of (3) (withψ = 0). The
real part is fulfilled by (7), the imaginary part will deter-
mine the value ofΩ0 and is equivalent to

∫

+∞

−∞

dωg(Ω0 + ω)
∫ π

−π

dθρ(θ, ω) sinθ = 0. (13)

If g is symmetric aboutΩ then forΩ0 = Ω this equation is
automatically fulfilled because of the antisymmetry of the
integrand under the substitution (ω, θ)↔ (−ω,−θ).

In general we can expect the following to happen. For
small values ofK the incoherent state prevails and every
oscillator moves around the circle at its own individual fre-
quency. WhenK is risen above a certain critical value
(equal to 2

πg(Ω0) , whereΩ0 can be determined by solving
(13) for small valuesKr) a group of oscillators with fre-
quencies in the interval [Ω0−Kr,Ω0+Kr] (r given by (12))
will synchronise. AsK grows the size of the synchronised
group grows. Dependent on the form of the distribution it is
possible that another synchronised group arises, whenK is
increased. However, the previous calculations do not hold
anymore for two different synchronised groups and the crit-
ical value forK for the appearance of the second group will
probably be more difficult to derive. WhenK is risen fur-
ther other groups can arise or groups can merge with each
other into a synchronised group that will again grow with
K. Although the previous calculations do not rigorously
imply this process (the stability has not been investigated
and only one synchronised group was considered) simula-
tions (with a finite number of oscillators) indicate that this
is what actually happens.

Example.We consider the distributiong defined by

g(ω) = 2(1− ω), ∀ω ∈ [0,1],

and zero outside [0,1]. We can numerically solve equa-
tions (12) and (13) to obtain the relation betweenK and
r as given in figure 1. (The critical value forK can be
calculated to beKc ≈ 0.4096.) In figure 2 we keep the
coupling strength fixed atK = 0.42 and we compare the
long term average velocities of the oscillators for infinite
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N with estimates obtained from simulations. For infiniteN
those values follow from the previous derivation (for this
value ofK we calculatedΩ0 ≈ 0.2421 andKr ≈ 0.1999).
For the simulations we observed a population of 10000
oscillators (with individual frequencies randomly chosen
out of the given distributiong) over a time interval of
lengthT = 1000 with initial conditionθi(0) = 0, ∀i. We
used the Euler method with a time-step of 0.1 and then
plotted θi(T)/T versusωi for all i. Each different run is
represented by a dashed line, the solid line represents the
(numerically computed) infiniteN case.
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Figure 1: The order parameterr as a function of the cou-
pling strengthK.
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Figure 2: Long term average values ofv as a function ofω.
Solid line: infiniteN case, numerically computed by (12)
and (13); dashed lines: simulation results.

3. Oscillators with equal frequencies

One way to relate the result of the previous section to the
finite N model is by considering the distributiong, with

g(ω) =
1
N

N
∑

i=1

δ(ω − ωi). (14)

Since aδ-function has a maximum of infinity, application
of the previous result would indicate that for smallK > 0
there will beN synchronised groups, each corresponding
to one of theωi and representing a fraction1N of the en-
tire population. This does not mean that those oscillators
move at a constant velocity. To know how the groups move
one would still have to solve (1). This behaviour suggests
that (for finiteN), oscillators with the same frequencies will
always synchronise. Of course, from the differential equa-
tions it follows forωi = ω j that if θi = θ j then θ̇i = θ̇ j ,
implying that (on the circle) oscillatori and j can not pass
each other, and thus their long term average frequencies
will be the same. Simulations (with finiteN) also show
that ifωi = ω j thenθi −θ j → 0 (modulo 2π). Although this
seems quite natural in such a system (where the interaction
is attractive), even the local stability properties of the sub-
manifoldθi = θ j are already hard to investigate. However,
for smallK > 0 we have the following result (of which we
omit the proof).

Proposition 1 Assume thatωi = ω j = ω for some i, j,
both in {1, . . . ,N}. Set S= {1, . . . ,N} \ {i, j}. If ωk , ω,
∀k ∈ S , then there exists anε > 0, such that∀K ∈ (0, ε) the
submanifolds defined byθi = θ j + 2πm, m∈ Z, are locally
asymptotically stable under the flow of (1).

This behaviour can be seen as a special case of partial en-
trainment, which is described in the next section.

4. Partial entrainment

While in the case of infiniteN a solution may exist where
a group of oscillators is moving at the same velocity (at
all times), this is impossible for finiteN (if all individual
frequencies are different). However, there exist solutions
where all oscillators within a groupSe have bounded phase
differences, i.e.

∃C > 0 :
∣

∣

∣θi(t) − θ j(t)
∣

∣

∣ < C, ∀t ≥ 0,∀i, j ∈ Se.

Definition. If this property holds for a non-empty proper
subset of the population then we call the corresponding
solution partially entrained with respect to this subset.

Note that according to this definition (which slightly dif-
fers from the one in [1]) there is always a trivial form of en-
trainment corresponding to the singletons{i} ⊂ {1, . . . ,N}.
The following proposition gives a sufficient condition for
the partial entrainment with respect to a subsetSe that con-
tains more than half of the population.

Proposition 2 Let Se be a proper subset of{1, . . . ,N} with
M elements and such that M> N

2 . Assume that

∣

∣

∣ωi − ω j

∣

∣

∣ < K

√

N
M

(

4M − 2N
3N

)
3
2

, ∀i, j ∈ Se.

Then there exists a solution of (1) that is partially entrained
with respect to Se.
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Proof
For somea ∈ (0, π2 ] let Ra denote the region

Ra = {θ ∈ R
N :

∣

∣

∣θi − θ j

∣

∣

∣ ≤ a,∀i, j ∈ Se}.

We will find a value fora for whichRa is a trapping region
for (1). Assume that for somet0 ∈ R the solution of (1)
at time t0 is located at the boundary ofRa: θ ∈ Ra and
θi − θ j = a for somei, j ∈ Se. From (1) it follows that

θ̇i − θ̇ j = ωi − ω j − 2
K
N

sin

(

θi − θ j

2

) N
∑

k=1

cos

(

θk −
θi + θ j

2

)

.

In the summation we can bound the terms for whichk ∈ Se

by

cos

(

θk −
θi + θ j

2

)

≥ cosa

since
∣

∣

∣

∣

θk −
θi+θ j

2

∣

∣

∣

∣

≤ a. (In fact
∣

∣

∣

∣

θk −
θi+θ j

2

∣

∣

∣

∣

≤ a
2, but this

bound would result in more complicated calculations.) If
k < Se we only know that cos

(

θk −
θi+θ j

2

)

≥ −1, and thus

θ̇i − θ̇ j ≤ ωi − ω j − 2
K
N

sin
a
2

(M cosa− (N − M)) .

For Ra to be a trapping region we need this to be nega-
tive. Minimising this expression by choosinga appropri-

ately leads to sina2 =
√

2M−N
6M , resulting in

θ̇i − θ̇ j ≤ ωi − ω j − K

√

N
M

(

4M − 2N
3N

)
3
2

< 0,

and thus for this value ofa Ra is a trapping region. Since
Ra is non-empty we can choose an initial condition in
Ra and the resulting solution of (1) will exhibit partial
entrainment with respect toSe. �

On the other hand, if there arei, j ∈ Se with
∣

∣

∣ωi − ω j

∣

∣

∣ >

2K, then partial entrainment with respect toSe is impos-
sible sinceθi − θ j will grow unboundedly. Of course, par-
tial entrainment may still occur with respect to some other
set. In some cases this allows to determine a maximal en-
trained subset, i.e. a subset for which partial entrainment
can occur and which is not included in another entrained
set. Consider for instance a system of 5 oscillators with
ω1 = −0.1, ω2 = 0, ω3 = 0.2, ω4 = 12 andω5 = 100.
From the previous inequality and the result of the proposi-
tion it follows that forK ∈ (4.78,5.9) there exists a solu-
tion exhibiting partial entrainment for the set{1,2,3}, while
all other entrainment sets must be subsets of{1,2,3}. For
K ∈ (42.78,44) this is true for the set{1,2,3,4} and for
K > 183.9 there exists a totally entrained solution.

Although these analytical results seem rather crude and
forced us to take extreme values for the parameters, they
are indicative for what happens in general and backed by
simulation results we presume the following scenario to
hold. If, for a generic system withN oscillators (and also

for the previous example), the coupling strengthK is in-
creased from 0,N different ‘regimes’ can be distinguished.
Each regime can be determined by a partition of{1, . . . ,N}
of which every element is maximal entrained subset (it may
be a singleton). The different regimes correspond to suc-
cessive intervals forK. First, for small values ofK, there
is no entrainment at all, all phase differences diverge for all
possible solutions. Above some critical value forK almost
all1 solutions exhibit entrainment of two oscillators. When
K is increased above the next critical value either two other
oscillators form a new entrained subset or a third oscilla-
tor joins the previous one. This process continues and can
generally be described as follows. For a fixedK almost
all solutions show the same entrainment behaviour. When
crossing a critical value forK (while increasingK) two en-
trained subsets (possibly singletons) merge into a new en-
trained subset, which is again the same for almost all initial
conditions. AfterN − 1 transitions full entrainment occurs
as described in [1].
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