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Abstract—A numerical study on force sensitivity
of dynamic force microscopy is carried out near period-
doubling bifurcation of microcantilever vibration. A
small periodic signal is additionally given to the driv-
ing signal of the microcantilever to utilize sensitive de-
pendence of vibration on tip-sample distance. The ad-
ditional periodic signal proposed here readily achieves
the same effects as parametric excitation which has
been employed for enhancing sensitivity.

1. Introduction

In 1986, G. Binnig, C. F. Quate and Ch. Ger-
ber have introduced the atomic force microscopy [1].
Among its operation modes, the dynamic force mi-
croscopy (DFM) has made remarkable progress toward
a core technology for nanoscience and nanoengineering
[2, 3]. The DFM allows us to investigate material sur-
faces in nanometer resolution without damaging sam-
ples [4]. There are also many applications of the DFM
including measurement of various surface properties
[5, 6, 7], manipulation of single atoms [8], and control
of surfaces [9].

A key device of the DFM is a vibrating microcan-
tilever sensor to detect the tiny interaction force be-
tween a sharp tip manufactured at the free end of
the microcantilever and sample surface confronting
the tip. The vibrating microcantilever shows a va-
riety of nonlinear phenomena especially when it is
placed in close proximity of the surface. The mi-
crocantilever vibrating in nonlinear tip-sample in-
teraction force exhibits period-doubling bifurcation
[10, 11] and bistability involving jumping and hystere-
sis [12, 13, 14, 15, 16]．In addition, Ashhab et. al and
Basso et al. have predicted chaotic vibration near sur-
faces theoretically [17, 18] and numerically [19]. An
experimental study by Jamitzky et. al has recently
clarified period-doubling route to chaos actually oc-
curs in close proximity of a sample surface [20].

These significant works have motivated researchers
to develop measurement techniques using nonlinear
dynamics of vibrating microcantilevers [21]．In partic-
ular, Patil et al. have proposed enhancing force sen-
sitivity by parametric excitation of a microcantilever
near period-doubling bifurcation [11]. This strategy is
based on the idea that dynamical systems near period-

doubling bifurcation can be utilized as a small signal
amplifier [22, 23]．The parametric excitation modu-
lating the tip-sample distance was experimentally per-
formed by shaking the sample vertically or scanning
periodic lattice structures of single crystals. However,
it is preferable to avoid shaking sample by the scanner
of DFM. The scanners are primarily designed to posi-
tion samples spatially and therefore difficult to drive
at high frequency.

In this paper, we propose applying a small periodic
signal to the driving force of the microcantilever. The
frequency of the applied signal is a half of driving fre-
quency and its amplitude is much smaller than the
driving amplitude. The applied small periodic signal
and the parametric excitation are shown to have the
same effects on vibration characteristics for tip-sample
distance. The proposed technique is easy to apply in
the actual DFM systems without shaking scanners.

2. Mathematical model of microcantilever
probe near sample surfaces

A schematic diagram of the dynamic force mi-
croscopy is shown in Fig. 1. The microcantilever is
excited at or near its mechanical resonant frequency
during measurement. When the tip of microcantilever
is placed close to a sample surface, the resonance fre-
quency is varied depending on the tip-sample interac-
tion force governed by their distance. The shift of the
resonant frequency is measured by amplitude modula-
tion [4] or frequency modulation [24]．The topography
of sample is acquired by raster-scanning of the surface
with keeping the vibration constant．The vibration is
typically measured by the optical lever method [25]．

The first mode vibration of microcantilever is de-
scribed by the following differential equation, when
the tip-sample interaction force is approximated by
Lennard-Jones potential function [17]:





ξ̇1 = ξ2

ξ̇2 = −ξ1 −
d

(α(t) + ξ1)2
+

Σ6d

30(α(t) + ξ1)8

+ε(Γ cos Ωt − ∆ξ2) + p(t),

(1)

where α(t) denotes the equilibrium point of the tip,
when only the gravity acts on it. (ξ1, ξ2) is the dis-
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Figure 1: Operation of dynamic force microscopy.
Sample surface is scanned by microcantilever probe vi-
brating at its resonant frequency. The mean distance
between the apex of tip and the surface of sample is
maintained constant by scanner device which control
the height of the sample surface. The vibration of can-
tilever is typically measured by optical lever method.

placement and velocity of the tip．p(t) is the perturba-
tion input to microcantilever．(Ω, Γ) denotes the fre-
qency and amplitude of the sinusoidal external force
driving microcantilever. Σ is diameter of molecular
composing sample and tip. d = 4/27 is a constant. ε
is a small parameter. It should be noted that Eq. (1)
is dimensionless．It has been shown that the motion
of microcantilever can be chaotic by applying the Mel-
nikov method to Eq. (1) under α(t) = α0 constant and
p(t) = 0 [17, 18].

Hereafter, we consider the following three cases.
The first is denoted by case 1 that parametric exci-
tation nor additional periodic signal are not applied.
The condition is described as follows:

{
α(t) = α0

p(t) = 0.
(2)

The DFM is typically operated under this condition.
The second is case 2 where the microcantilever is

parametrically excited by modulating tip-sample dis-
tance at the frequency ω = Ω/2. In this case, the α(t)
is written as follows:

{
α(t) = α0 + εγ cos ωt

p(t) = 0,
(3)

where γ is the amplitude of parametric excitation sat-
isfying γ ¿ Γ．

case 3 is the case in which a small periodic signal
is additionally given to the driving force of the micro-
cantilever:

{
α(t) = α0

p(t) = εγ cos ωt,
(4)

where γ and ω denote the amplitude and frequency
of the periodic signal satisfying γ ¿ Γ and ω = Ω/2,
respectively．The symbols are the same as in case 3
for simplicity of notation.

3. Effects of small periodic signal given to mi-
crocantilever drive

Patil et. al have experimentally discussed the pos-
sibility of enhancing force sensitivity by exciting the
scanner at a few Hertz much smaller than the driving
frequency 11.2 kHz [11]．However, perturbing scanners
is not preferable, because the scanners have to adjust
the height of sample in subnanometer resolution dur-
ing measurement. In this paper, a small perodic signal
is superimposed to driving signal as an alternative for
the parametric excitation.

To begin with, we should show that the superim-
posed signal has the same effect as the parametric exci-
tation. In the parametric excitation (case 2) described
by Eq. (3), the attractive and repulsive interactions
are approximated as follows:

− d

(α + ξ1)2
= −d

[ 1
(α0 + ξ1)2

− 2
(α0 + ξ1)3

εγ cos ωt

+
3

(α0 + ξ1)4
ε2γ2 cos2 ωt − · · ·

]

≈ −d
[ 1
(α0 + ξ1)2

− 2
(α0 + ξ1)3

εγ cos ωt
]
,

(5)

Σ6d

30(α + ξ1)8
=

Σ6d

30

[ 1
(α0 + ξ1)8

− 8
(α0 + ξ1)9

εγ cos ωt

+
36

(α0 + ξ1)10
ε2γ2 cos2 ωt − · · ·

]

≈ Σ6d

30

[ 1
(α0 + ξ1)8

− 8
(α0 + ξ1)9

εγ cos ωt
]
.

(6)

The approximation is valid, assuming that γ is small
enough to satisfy the relation |εγ| ¿ |α0 + ξ1|. Al-
though the assumption may fail when the tip comes to
collide against the surface, it occurs instantaneously
and therefore the influence is negligible to discuss
the effects of the parametric excitation. Substituting
Eqs. (5) and (6) to Eq. (1), the following equation is
derived:





ξ̇1 = ξ2

ξ̇2 = −ξ1 −
d

(α0 + ξ1)2
+

Σ6d

30(α0 + ξ1)8

+ε(Γ cosΩt − ∆ξ2) + p(t),

(7)

where p(t) is given by

p(t;α0) =
[ 2d

(α0 + ξ1)3
− 8Σ6d

30(α0 + ξ1)9
]
εγ cos ωt. (8)
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(a) Normal operation (case 1)
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(b) With parametric excitation (case 2)
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(c) With small periodic signal (case 3)

Figure 2: Bifurcation diagram and characteristic curves of displacement of microcantilever on tip-sample dis-
tance near period-doubling bifurcation point. The characteristics curves show stroboscopic plots of displacement
for monotonously increasing and decreasing tip-sample distance. Frequency of stroboscopic plots equals to the
driving frequency. The change of vibration is much delayed by long transient near the bifurcation point.

It is shown that p(t) has a component whose frequency
equals to a half of the driving frequency, by taking
the fundamental component with respect to the terms
enclosed in the brackets:

p(t; α0) (9)

= {2C(α0) cos(Ωt − θ(α0))} εγ cos ωt

+ (other components)

= C(α0)εγ cos
(

Ω
2

t − θ(α0)
)

+ (other components), (10)

where C(α0) and θ(α0) is a Fourier coefficient and
phase difference depending on α0. If we assume α0

is constant under steady states, Eq.(4) is derived by
neglecting the phase difference and rewriting C(α0)εγ
as εγ. Thus, it is reasonable that the parametric exci-
tation and small periodic signal have the same effects
under steady states, while there is a difference that the
amplitude of p(t) is not varied depending on the tip-
sample distance in the case of small periodic signal.
However, we will show the difference does not play a
role in enhancement of the force sensitivity using the
period doubling bifurcation.

4. Vibration characteristics near period-
doubling bifurcation

We here numerically compare the vibration charac-
teristics in the three cases described by Sec. 2 near
the period-doubling bifurcation point. The character-
istic curves of displacement of microcantilever on tip-
sample distance are shown in Figs. 2(a), 2(b), 2(c).
These characteristic curves show the stroboscopic plots
of displacement obtained by monotonously increasing
and decreasing the tip-sample distance. The frequency
of plots equals to the driving frequency. Note that the
curves are influenced by the transient states of vibra-
tion because of nonzero sweep rate. The bifurcation
diagrams constructed by the Newton-Raphson method

are also shown in these figures to depict the influence of
transient states. The parameters are here configured
at (Σ, Γ, ε, Ω, ∆, γ) = (0.3, 10, 0.1, 1.0, 0.4, 0.01).

case 1 (Fig. 2(a))
When the tip-sample distance is reduced, the vibra-

tion of microcantilever meets a bifurcation point at
which the period of the vibration is doubled. Before
the bifurcation occurs, the frequency is the same to
that of the excitation and variation of the displace-
ment for tip-sample distance is small. On the other
hand, the displacement is drastically changed immedi-
ately after the period-doubling bifurcation and there-
fore the force sensitivity can be increased. However,
the two curves show transient characteristics that is
not suitable for surface measurement. The curves do
not follow the bifurcation diagram near the bifurcation
point. The change of vibration is delayed due to long
transient not bistability.

case 2 (Fig. 2(b))
In the whole range, the period of vibration is 4π

due to the parametric excitation at the frequency Ω/2.
The displacement is rapidly changed around the origi-
nal bifurcation point, while the force sensitivity seems
to be relaxed compared to case 1. The transient is
also much reduced. The curves coincide to those as in
case 1, where the tip-sample distance is far from the
bifurcation point.

case 3 (Fig. 2(c))
The period of vibration is 4π due to the additional

small periodic signal with frequency Ω/2. As in case
2, the relaxed change of displacement is observed near
the original bifurcation point and the long transient
is also suppressed. In addition, the vibration far from
the bifurcation point is not largely changed by the ad-
ditional small perturbation.

We here notice that the parametric excitation (case
2) and the small periodic signal (case 3) have quali-
tatively same effects on the vibration characteristics.
Both techniques suppress the long transient state near
the bifurcation point. The case 3 seems better than
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case 2, because the parametric excitation by shaking
scanner is not preferable from the point of the primary
roles of the scanner. The hysteresis characteristics of
piezo scanners disturbs precise control of the height
of sample surface. Figure 3 shows the dependence of
displacement on the amplitude of the additional peri-
odic signal at the bifurcation point. The continuous
dependence on the amplitude implies that the force
sensitivity can be adjusted by varying the amplitude
of periodic signal.

5. Conclusion

In this paper, we have numerically discussed the
force sensitivity of the DFM near the period-doubling
bifurcation. The additional small periodic signal to
microcantilever drive improves the vibration charac-
teristics near the bifurcation point. The proposed
technique is easily applied to actual DFM systems and
also has the same effects as the parametric excitation
that can enhance the force sensitivity of DFM. The
subharmonic component is available for measurement
because of its rapid increase near period-doubling bi-
furcation point.
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Figure 3: Dependence of displacement of cantilever on
amplitude of additional small signal
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