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Abstract– In tapping mode atomic force microscopy 

(AFM) the highly non-linear tip-sample interaction gives 
rise to complicated dynamics. Apart from the well known 
bi-stability under typical imaging conditions the system 
exhibits chaos-like dynamics at small average tip-sample 
distances, which are typical operation conditions for 
mechanical dynamic nano-manipulation. We have 
investigated the influence of Q-control on the non-linear 
behavior of the system. This was accomplished by 
numerically simulating the AFM tip modeled by a set of 
ordinary differential-difference equations. The time series 
data was analyzed employing non-linear analysis tools and 
spectral analysis. The information dimension was 
computed together with a bifurcation diagram and a 
Poincaré map and was compared to the Fourier 
Spectrogram. 
 
1. Introduction 

Since its invention in 1995 [1] the atomic force 
microscope (AFM) has become a widely used instrument 
for surface analysis with nanometer resolution. Various 
imaging modes including static and dynamic methods 
have been introduced. The most common techniques are 
contact mode - a quasi static mode - along with the 
dynamic measurement modes such as non-contact mode, 
tapping or intermittent contact mode, and ultrasonic mode.  

For standard imaging under ambient conditions the 
amplitude modulation AFM is one of the most often used 
measurement modes [2, 3]. In this mode the amplitude of 
the oscillatory motion is used as a feedback signal to trace 
the surface topography. The quality factor of the force 
sensor determines the response time of the instrument.  

The manipulation of the sensor response by an 
additional external feedback circuitry allows one to tune 
the response characteristics to purpose. This was 
demonstrated already in 1993 by Mertz and co-workers 
[4]. Such an external feedback circuitry that damps or un-
damps the cantilever oscillations is referred to as Q-
control. Current implementations of a Q-control rely on 
variable phase shifters [5-7], time delays [8] or on a direct 
control of the phase and an additional signal generator [9]. 
Practical applications of Q-control include an resolution 
enhancement on biological specimen [6, 10, 11] or the 
measurement of energy dissipation [7]. By reducing the 
Q-factor the response time of the amplitude signal can be 
decreased. This increases the bandwidth of a topography 

feedback in dynamic AFM [12]. The non-linear dynamics 
of an AFM that is operated with such a reduced (or 
increased) Q-factor will be investigated in the following.  

 
2. Modeling 

The cantilever is modeled as a multiple degree of 
freedom system (N=3) using the state space formalism as 
described in [13]. The Q-control was modeled as a pure 
time delay [14]. The non-linear boundary conditions at the 
tip-side are modeled as a non-linear output feedback. Such 
a feedback perspective on dynamic AFM [15, 16] allows 
for a numerically efficient investigation of the system 
dynamics [17].  

The simulation was implemented using the non-linear 
DMT model for the tip-sample interaction [18] using 
Matlab 7 and Simulink. A model with N = 3 eigenmodes 
was employed. Material parameters were: Et = 129 GPa; 
νt = 0.28, Es = 70 GPa; νs = 0.3; H = 6.4 10-2 nm nN, γ = 
0.031. The system was driven at the fundamental 
resonance ω1. The driving amplitude was adjusted to a 
free response amplitude of A0 = 20 nm. These are typical 
conditions for imaging in ambient conditions. The input 
and output coupling factors of an idealized rectangular 
beam with an idealized detection and a spring constant of 
k = 10 N/m were assumed. A quality factor of Q = 200 
was assumed for all modes.  

To model a dynamic force spectroscopy experiment 
as sketched in Fig. 1, the distance between the sample and 
the tip’s rest position was reduced in logarithmic steps 
between zs = 22 nm and zs = 0.2 nm. After each step the 
system was allowed to equilibrate for at least 10 Qeff   
cycles before data was extracted for further analysis by 
fast Fourier transformation (FFT) or other analysis tools. 
 
3. Results and Discussion 

Three different settings of the feedback parameter 
were investigated: (a) a negative value G = -0.01 (Q = 66), 
(b) the system without feedback (Q = 200), (c) a positive 
gain G = 0.0042 leading to Q = 800. The spectrograms 
(frequency vs. log10(zs)) of the numerical dynamic force 
spectroscopy experiment are displayed in Fig. 2.  

For the system with the enhanced q-factor (Q = 800) 
the system remained in the low-amplitude (attractive) 
regime during the approach. The fundamental prevails 
during the entire approach. Only shortly before the tip 
snaps to contact at zs = 0.4 a weak sideband develops. 
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Fig. 1: Scheme of the dynamic force spectroscopy 

experiment as it was simulated numerically. The gap 
between the sample and the undeflected cantilever was 
reduced in logarithmic steps from zs = 22 nm to 
zs = 0.2 nm. 

 
There was only a very slight harmonic distortion as it 

can be verified from the FFT spectrum. All harmonics are 
at least three orders of magnitude smaller as compared to 
the fundamental. In the case of the system without 
external feedback (Q = 200) there is a transition between 
the low amplitude and the high amplitude state at about 18 
nm (Fig. 2b). In the transition regime sidebands with 
varying frequency can be identified. At about zs = 5 nm 
period doubling occurs which is followed by a 1-periodic 
and an aperiodic regime.   

For the system with Q = 66 the non-linear dynamics 
is even more pronounced. The system enters the repulsive 
regime immediately upon approaching the sample surface 
(zs ≈ A0). During the first 10 nm of the approach the 
system remains periodic in the repulsive state. However, 
at zs = 9.048 nm strong sidebands become visible (Fig. 
2a). This frequency and amplitude of the sidebands varies 
slightly, until at zs = 4.928 nm the system recovers to a 1-
periodic behavior. This is followed by a period-doubling 
bifurcation with period-2 at zs = 3.882 nm, period-4 at 
zs = 1.856 nm and period-8 at zs = 1.739 nm before a 
weakly aperiodic response is achieved. Nevertheless, it 
should be noted that the excitation frequency still 
dominates the system response in this regime. Other 
spectral components are still one or two orders of 
magnitude smaller as compared to the response at 
excitation frequency. 

In order to investigate the non-linear features of the 
system the time series of the deflection data has been 
embedded into a three-dimensional phase space by using 
delay coordinates [19,20]. As delay times fractions of the 
natural system time scale have been used, namely: T/4 and 
T/8 where T is the period of the driving force. Three 
dimensional plots of the embedding are shown in Fig. 3 
for the case Q=66 where the most pronounced non-linear 
behavior is found. The panels correspond to the period 

doubling, the period 4, period 8 and a weak chaotic 
regime respectively. 

 

 
Fig. 2: Spectrograms as obtained for a reduced q-

factor, the uncontrolled system and an enhanced q-
factor. Note the logarithmic scale for the z-position 
zs of the sample.  
 
One can nicely observe how the initial trajectory splits 
into two sub-cycles (a) which then further split into 
additional cycles (b) until a whole torus in phase space is 
covered (d). Then a larger phase space volume is filled (e) 
until the system shows strong chaos. The non-linear 
behavior can be further characterized using a measure for 
the distribution of the trajectory in the phase space [21]. 
One such measure which is well suited for this purpose is 
the so called information dimension D1. It describes the 
scaling of the density of the trajectory points in phase 
space. A strongly periodic trajectory which is mapped to a 
circle in phase space has an information dimension of one. 
The more complicated the trajectory and thus the system 
behaves the larger the information dimension gets. For 
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strongly chaotic systems where the trajectory fills a part of 
the phase space densely the information dimension is 
close to two. 
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  (e)   (f) 
Fig. 3: Embeddings of the deflection data into a 

three-dimensional phase space by using a delay of  T/8 
and T/4 for different regimes: (a) period doubling 
regime (b) period 4 (c) period 8 (d) very large period  
(e) weak and (f) strong chaotic regime for Q=66. 
 
In Fig. 4 the information dimension is shown for all three 
cases Q=66, 200 and 800 in dependence of the z-position 
of the tip. Far away from the surface D1 is close to one for 
all three cases. Under approaching the surface D1 is 
increasing strongly for Q=66 and Q=200 while it stays 
almost unity for Q=800. This means that the system 
Q=800 does not show chaotic signatures while the other 
two systems show a varying degree of chaoticity. In the 
case Q=66 the strongest chaotic behavior is observed 
which is reflected in a very early increase in the 
information dimension of the embedded trajectory. D1 
increases as soon as the system shows a period doubling. 
This behavior is also observed in the Q=200 case, but here 
the period doubling starts later in the approach. The 
information dimension further shows regular windows 
where it decreases strongly which corresponds to a regular 
behavior of the system. The information dimensions 
corresponding to the different phase space plots in Fig.3 
are: D1=1.04 for the period 2 case, D1=1.09 for the period 
4 case, D1=1.125 for the period 8 case, D1=1.14 for the 
large period case, D1=1.28 and 1.79 for the weak and 
strong chaotic case. For the case (d) in Fig. 3 a Poincaré 
section has been computed which is shown in Fig. 5 (left). 
The lower right structure in the plot corresponds to the 
traversal into the plane, while the upper left structure 

corresponds to the traversal out of the plane. In the lower 
right structure there are four substructures visible which 
appear also in the upper left structure but in a different 
ordering. This reflects the stretch and fold mechanism in 
the attractor. 
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Fig. 4: Information Dimension D1 for all three 

cases Q=66, 200 and 800 vs. z-position of the tip. For 
the case Q=66 the largest dimension is obtained while 
for the case Q=800 the dimension stays at a value of 1 
for the whole approach. The case Q=200 shows values 
larger than one but is overall smaller than Q=66. 
 
By performing a stroboscopic view of the data one can 
draw a bifurcation diagram where the deflection 
amplitude is shown for a certain phase versus the tip-
sample distance. In Fig.5 (right) such a bifurcation 
diagram is shown for Q=66. One can observe a period 
doubling in the system which after a cascade of further 
doublings leads into a chaotic state. There is a nice 
correlation of the bifurcation diagram with the plot of the 
information dimension. After the first period doubling the 
information dimension starts to rise from one to approx. 
1.1 and then increases further to higher values, but 
decreases whenever the width of the black dots decreases 
in the bifurcation diagram. This can be explained by an 
increase of the chaoticity of the trajectories which leads to 
a higher information dimension and large variability in the 
bifurcation diagram. By comparing the bifurcation 
diagram with the spectrogram one can observe the period 
doubling cascade in both plots but the spectrogram does 
not show any substructure in the chaotic region while the 
bifurcation diagram and especially the information 
dimension plot shows different degrees of chaoticity. This 
is due to the lack of applicability of the Fourier transform 
to non-periodic signals. In these cases non-linear measures 
such as dimensions or entropies are the method of choice. 
For example in the case of weak chaos it is still possible to 
obtain reasonable information about the system by using 
Poincaré plots while the Fourier transform just shows a 
continuous spectrum. 
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Fig. 5: (left) Poincaré section of the trajectory (d) 

in figure 3, (right) Bifurcation diagram for the system 
in the case Q=66. 
 
4. Conclusions 
The non-linear dynamic behavior of the system depends 
strongly on the Q value. For small Q values such as 66 or 
200 a rich spectrum of irregular and chaotic motion is 
observed while for large Q values such as 800 the system 
behaves very regularly. For Q=66 a transition from regular 
behavior far away from the surface to chaotic behavior 
close to the surface has been found. A rich family of 
different types of trajectories can be observed where some 
of them show typical properties of chaotic systems such as 
a stretch and fold mechanism in phase space. The inherent 
chaoticity of the system can now be used in order to 
suppress the chaotic behavior and to stabilize the tip 
movement. One possibility would be the addition of noise 
to the signal to destruct the chaotic attractor and to confine 
the system to a regular behavior. 
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