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Abstract—We discuss the surface-tension driven
attraction of particles partially submerged in a fluid.
We demonstrate a mathematical analogy between the
attraction of millimeter-size particles (Cheerios effect)
and nanometer-size particles used in directed self-
assembly experiment. The Helmholtz equation for
fluid/air interface is solved numerically using integral
equation methods, and the force between an arbitrary
number of particles can be computed. We make de-
tailed study of the interaction of two and three par-
ticles and compare our findings with the established
results from the literature. In particular, we discuss
the validity of the geometric screening assumption.

1. ”Cheerios effect” and its technological sig-
nificance

Particles floating on water’s surface usually tend to
form clumps of irregular (but roughly circular) shape.
This particular phenomenon is sometimes referred to
as Cheerios effect, taking its name from the popu-
lar morning cereal. Clumping of Cheerios in a bowl
may seem like an entertaining, but hardly relevant
physical phenomenon. However, surprisingly enough,
this effect is used on the forefront of current techno-
logical development of material science, namely, the
quest for speed and miniaturization of devices. In-
deed, if continuous miniaturization of microelectronic
devices is to continue unabated, by 2015-2020 we will
exhaust the possibilities offered by current top-down
lithographic technologies. Thus, the bottom-up pro-
cess of self-assembly has been suggested as the new
technique which may take over the role of traditional
technologies in the mass assembly of nano-devices.
While the bottom-up techniques are yet to demonstrate
their potential (although some substantial theoretical
and experimental progress on this way has already
been achieved, see [1]), a combination of top-down and
bottom-up techniques – directed self-assembly – has
already shown the potential of producing simple geo-
metric patters, such as lines [2, 3].

Let us start by deriving the effective interaction po-
tential between particles partially submerged in wa-

ter. It has been shown [4] that surface tension forces
are dominating for the micron-size particles, which re-
sulted in the power law for particle interaction. For
much smaller and larger scales which are of interest to
us, van-der-Waals forces or gravity must be taken into
account as well. This will form a surprising mathemat-
ical link between cheerios effect, where interface is de-
formed by surface tension and gravity, and the theory
for self-assembly at nano-scales. We shall show that
mathematically, the phenomena of particle attraction
on millimeter and nano-meter scales are completely
equivalent, in spite of very different physics. For the
purpose of simplicity, we shall assume that the devia-
tion of the surface level from the equilibrium is small,
so the evolution of the interface is governed by lin-
ear equations. Notice that this does not assume that
the interactions between the particles are linear in na-
ture. Indeed, we shall show that the finite size of the
particles and their relative spatial position play an im-
portant role in the interaction.

Particles embedded in the interface deform it, and
gravity (in case of millimeter particles) or van der
Waals forces (nm size particles) try to bring the surface
back [5, 6, 7]. In both cases, the surface is goverened
by the Helmholtz equation

l2c∆h − h = 0 (1)

with capillary length lc being several mm for the ’chee-
rios’ case and 300 nm for 100 nm nano-particles. Equa-
tion (1) must be supplemented by boundary conditions
at the boundary of each particle. We choose to spec-
ify contact angle of water-particle-air interface. Ex-
act value of derivative of h(x, y) with respect to the
normal to the water/particle boundary is a nonlinear
function of the water level, as the angle of the nor-
mal to a sphere relative to the horizontal plane at a
given level changes when that level rises or sinks. We
shall not try to attempt to incorporate this nonlinear
boundary condition into our scheme here. Instead,
we use linear approximation again and postulate that
the derivative of the interface normal to the particle
is specified. Since we are interested in small surface
deviations from equilibrium and due to the linearity
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of equation (1), we shall re-scale the value of the nor-
mal derivative of h(x, y) at the boundary to be 1, as
this derivative is assumed to be the same for all parti-
cles. This approximation is only valid if we posit that
the equilibrium level of water is the same for all par-
ticles, and all particles are identical in size, as well as
their wetting properties. Thus, we augment the equa-
tion (1) by the following boundary condition on the
boundary of each disk Dk

∂h

∂n
[(x, y) ∈ Dk] = 1. (2)

These physical considerations show that interaction
potentials proportional to the Green’s function for the
Helmholtz operator plays a fundamental role in par-
ticle self-assembly across surprisingly many orders of
magnitude. Thus, we shall consistently use the inter-
action potential derived from inverting the Helmholtz
operator (Bessel functions, see below) in all of our nu-
merical simulations.

2. The numerical scheme

The goal of this paper is to find a numerical solution
to the following problem. We need to find interaction
potential of N disks of radius R with their centers
positioned at r = ci = (xi, yi), i = 1, . . . , N . In order
to do that, we need to find the deformation of water
surface h(x, y) which is described by equation (1) with
boundary conditions (2).

To use Green’s function methods, let us add a set of
δ-functions to the right-hand side of equation (1). We
adjust the strength of these δ-function so it neutralizes
the flux from the boundary. More precisely, we re-
formulate the problem (1-2) by positioning a set of δ-
function at the center of each disk ck to the right-hand
side of (1):

l2c∆h − h = A
N∑

k=1

δ (r − ck) , (3)

where R is the radius of the discs, K1(x) is the modi-
fied Bessel function of the second kind and A is given
by

A =
lc

K1 (R/lc)
. (4)

Since K ′
0(x) = K1(x), the boundary condition (2) be-

comes
∂h

∂n
[r ∈ Di] = AFi(r) (5)

with

Fi(r) =
∑
k �=i

K1 (|r − ck|) (r − ck,n(r))
|r − ck| , (6)

where n(r) denotes the outward normal to the disk at
the point r ∈ Di and (a,b) is the scalar product of
vectors a and b.

We seek a solution to the problem (3-5) using inte-
gral formulation. On the boundary of each disk, we set
a continuum of point charges with density ρ(r). For
each disk i, the density of these charges ρ(r) satisfies
the following Fredholm integral equation of the first
kind:

∑
k �=i

∫
r′∈Dk

K1 (|r − r′|) r − r′

|r − r′|ρ(r)dr′ = Fi(r) , (7)

with Fi(r) given by (6).
Equation (7) can be solved by two methods: either

direct discretization of (7) or using FFT (Fast Fourier
Transform) methods. Both methods are roughly the
same in both efficiency and accuracy, so we used two
methods on a benchmark problem (two disk attrac-
tion) in order to be sure of the reliability of our code.
All numerical results presented in this paper were ob-
tained by the direct discretization method. The inte-
gral in (7) is discretized and the corresponding linear
equation with full matix is inverted. If N disks are con-
sidered and K discretization points are used on each
disk, we need to solve a linear equation with NK un-
knowns. Since the matrix is full and unstrctured, this
will require O((NK)2) operations.

The resulting potential energy due to disk attraction
is proportional to the elevation of the interface from its
undisturbed value at the disk boundary. The potential
energy for the set of disks with centers positioned at
ck, k = 1 . . . N is thus

E[c1, . . . , cN ] =
N∑

k=1

∫
|r−ck|=R

h(r(sk))dsk , (8)

where sk denotes arclength parametrization of the
boundary of k-th disk. The force on k-th disk is com-
puted as minus the gradient of the energy (8) with
respect to the position of k-th disk’s center ck:

Fk = − ∂E

∂ck
. (9)

While it is possible to derive an analytic expression
for the force (9) provided that the solution of (3-5)
is known, we have discovered that it is more advan-
tageous (and simple) to perform the differentiation in
(9) numerically for the type of problems we are going
to consider here.

Having finished the discussion of the algorithm, we
now turn our attention to the results. We shall de-
scribe two problems. First, as a calibration problem,
we shall compute the force of interaction between two
disks and compare it with the theoretical estimates
from the literature. Second, we shall investigate the
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interaction between three particles and compare our
results with the assumption of geomteric screening
which has been used in many-particles simulations.

3. Two particle interaction

The problem of two disks which are attracted due
to the effect of surface tension has been understood
rather well. We shall not go into details here and will
just refer the reader to the literature. In particular, it
has been shown [5, 6] that two particles separated by
a distance l have interaction potential proportional to
exp(−l/lc) in one dimension, and K0(l/lc) in two di-
mensions (K0(x) being the modified Bessel function of
the first kind). The force between the particles is then
proportional to K1(l/lc), and this result holds for both
floating and partially submerged particles, although
the coefficient in front of the Bessel function is strongly
dependent on the physical properties, such as whether
particles are floating or submerged, contact angle, par-
ticle geometry etc. Mathematically, these interaction
potentials arise from inversion of Helmholtz operator
in (1). In the analytical expressions cited above, the
force was computed in the approximation that the dis-
turbance created by a single disk is unaffected by the
presence of the second disk. This is expected to be
the case when disks are far apart, but of course it is
interesting to know how this approximation compares
with the results of full numerical solution. In our sim-
ulations, we have computed the force for the range of
distances d separating the disks from d = 2.2R (with
R being disks’ radius) to d = 10R. The results (not
shown here for lack of space, see [8] for details) give an
excellent agreement between predicted and computed
force.

4. Geometric model of screening

Traditional model of particles’ screening by capillary
attraction [9, 10] incorporates geometric argument to
find out the magnitude of the forces. The force F0(d)
between any two unobstructed particles is dependent
on the absolute value of the distance d only and is
directed towards the center of the particles. Thus, the
force acting on A due to interaction with B is simply

FAB = F0 (dAB)nAB ,

where nAB is a unit vector pointing from the center
of A towards B. The force on the particle A due to
interaction with C is less, as only a portion θ/(θ + φ)
of this particle is visible. Thus,

FAC =
θ

θ + φ
F0 (dAC)nAC . (10)

The total force acting on the particle A is then just
FA = FAB + FAC . One can prove that for this geo-
metric screening model, the force is not potential by

showing that the work over a specified closed contour
is not zero [8]. This observation is important, since we
expect that the force between arbitrary many particles
should be potential, as it comes from minimization of
surface energy of the interface. We will now show that
the geometric model of screening does not adequately
describe the magnitude of forces between particles in
a specific three-particle configuration.

5. Numerical results for interaction of three
particles and comparison with geometric
screening models

To study the validity of geometrical screening quan-
titatively, we performed a numerical study of the sys-
tem illustrated on Fig. 1. The x direction is horizontal
and y direction is vertical. Disks B and C are posi-
tioned on the horizontal line at the distance D. Disk
A is also positioned at the distance D from disk A,
but the line connecting the centers of A and B forms
angle α with respect to horizontal. The distance be-
tween the disks was chosen to be D = 2.5R, where R
is disk’s radius. When α = π/2, there is no screen-
ing, and when α = 0, there should be no force ex-
erted on A by C according to the geometrical screen-
ing ansatz. We have chosen to re-scale all the forces
so they will be equal to 1 when α = π/2. The re-

A

B
C

D

D

α x

y

Figure 1: Explanation of notation used in the numer-
ical study of screening of forces between three disks.
The distances between centers of the disks A-B and
B-C are equal to D, and the line A-B is rotated with
respect to horizontal by the angle α.

sults of the simulations are shown on Fig. 2. We have
only shown the forces and not the interaction potential
since geometric screening breaks the potential nature
of the interaction force as we discussed above. The
forces from full numerical simulation are marked with
stars. The forces calculated from geometric screen-
ing are shown with crosses. For comparison, we have
also presented the forces which result from taking a
simple vector sum of forces between individual parti-
cles (marked with circles). The results summarized on
Fig. 2 clearly show that both the simple vector sum
and geometric screening severely under-estimate the
magnitude of the forces acting on particles in x direc-
tion, while providing fair comparison for the y direc-
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Figure 2: A comparison of attractive forces between
three disks computed from numerics (∗) and theoret-
ically computed interactions using a sum of individ-
ual forces of attraction between particles. The simple
vector sum of dual interactions is marked with circles
and the geometrically screened sum is denoted with
crosses.

tion. We observe an amplification of forces for small
α, when the screening should have been the strongest.
In particular, our simulation shows that for particles
on a line (α = 0) there is a strong interactive effects
even from the particles which are not visible.

6. Conclusions

We have found interaction potential between par-
tially wetting particles which are attracted by the force
of surface tension. Our results were obtained in the ap-
proximation of small deviation of water level from its
equilibrium value, so the equation for surface elevation
h(x, y) (1) is linear. Nonlinearity in the problem con-
sidered here comes from the domain where the problem
is solved, namely, the plane without several disks. The
corresponding forces on the particles are computed
and compared with several established model of multi-
particle interactions. Our studies show that models of
screening for Helmholtz interactions based on geomet-
ric visibility criteria need correction. We shall empha-
size that we have only studied three particle interac-
tions in the system with interface elevation described
by Helmholtz equation. Geometric screening may still
be valid (perhaps in some averaged sense) when parti-
cle motion is due to several competing physical reasons
or, alternatively, a when great number of particles is
present, as was the case in [9, 10]. Constructing a
valid screening model derived from the first principles
is a difficult problem which must be addressed in the
future.
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