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Abstract—During the past decade a large number of
chaos-based encryption systems has been suggested and in-
vestigated. Several of these systems are not suitable for
cryptographic applications as they are cryptographically
weak. In this paper some general design rules for chaos-
based encryption systems are derived based on strenghts
and weaknesses of already suggested systems. To demon-
strate the importance of each design rule an example sys-
tem which does not obey this rule is given and its weakness
is shown.

1. Motivation and objective of the work

During the past decade a large number of chaos-based
encryption systems has been suggested and investigated
(e.g. [1, 2, 3]). The idea behind is to use complex dynam-
ics but simple mathematical descriptions and algorithms of
chaotic systems for the purpuse of encryption. So the de-
sign of these systems has generally be done on symbol level
and not - as in classical cryptography - on bit level. This
approach has some general limitations concerning the cryp-
tographic strength of the designed systems as pointed out
in [4].

On the other hand for applications like encryption of im-
age and audio data cryptographical requirements are often
not so strong as for other applications. But the amount of
data to process is very large and thus for classical cryp-
tosystems the computational effort might be very high.

Therefore the scope of this paper is to derive some gen-
eral design rules for chaos-based encryption systems ac-
cording to strengths and weaknesses of already suggested
systems. These design rules shall help to reduce or even to
avoid cryptographical weaknesses of chaos-based encryp-
tion systems.

Signals of (analogue) chaotic circuits are often not ex-
actly reproducible due to inevitable small changes in ini-
tial conditions or system parameters. As for most applica-
tions an exact recovery of the original data is required here
considerations are focused on discrete-time encryption sys-
tems.

To show the importance of each design rule the following
example systems are used:

System E1. Image Encryption Scheme Based on 3D
Chaotic Baker Map [3, 5]
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Figure 1. Image Encryption Scheme Based on 3D Baker
Map

The system is designed to encrypt (a sequence of) RGB
pixels (24 bit each) of an image. As shown in Fig. 1 it is
based on an invertible 3D Baker map which permutes the
position of the pixel values in a 3D cube and a diffusion
operation

C(n) = d(n)@{[I(n) +¢(n)] mod 2**} &C(n—1) (1)

where I(n) represents the sequence of pixel values prior
to diffusion and C'(n) afterwards. The sequence ¢(n) is
generated by the logistic map

p(n+1) =4-¢(n)(1+¢(n)) O]

For encryption a key of 128 bit is used which consists of
six subkeys (k1 to k4: 24 bits, k5, kg: 16 bits). These bits
directly correspond to six system parameters.

System E2: Discrete-time chaos-based encryption sys-
tem using modulo nonlinearity [4, 6, 7, 8]

A general design of a self-synchronizing stream cipher
is given in [6]. Here the simplest realisation of it (Fig. 2)
is considered. It consists of a linear filter and just one
piecewise-linear nonlinearity

®
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2. Methods of cryptoanalysis

The secrecy of a cryptosystems is determined by the
minimum effort (e.g. resources, time), which is necces-
sary to break this system. So the aim of a design should
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Figure 2: Discrete-time chaos-based encryption system us-
ing modulo nonlinearity
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be a system which resists all known attacks (see i.e. [9]),
such as brute-force attack (extended key search), chosen
plain text attack, chosen cipher text attack, cipher text only
attack and differential attack, as long as possible.

3. Designrules

3.1. System structure

For the design of chaos-based encryption systems there
exist two general requirements:

e In order to retrieve the plain text during decryption the
encryption has to be invertible.

e As for most implementations of (discrete-time) chaos-
based encryption systems digital hardware is used
chaotic maps have to be selected which preserve im-
portant properties (such as mixing or uniform proba-
bility density function of the generated signal) when
digitized.

In classical cryptography there exist two approaches: block
ciphers and stream ciphers. Block ciphers map (identi-
cal) blocks of plain text to (identical) blocks of cipher text.
Therefore their basic mode of operation is called electronic
codebook mode (ECB). From nonlinear dynamics point
of view they can be considered as static nonlinear maps.
Stream cipher process data sequences using dynamical sys-
tems.

In chaos-based cryptography both approaches are used
as well. Chaotic block ciphers use a plain text block as ini-
tial condition and/or parameter of a chaotic map (e.g. in
[1]). As chaotic maps are not invertible a suitable method
of discretization of chaotic maps to invertible maps is re-
quired. A simple example is the 1D Baker map B : I =
[0,1) =T

Bx)=2-z— (2 x]. 4)

Discretization of it to I = [0,2NV) leads to the invertible
map

2x 0<z< N
Bd(w):{ 2r— (2N —1) N <z <2N } ®)

A general method of discretization is shown in [2] and ex-
amples of suitable maps as well as their application to im-
age encryption are presented e.g. in [2, 3].

For stream ciphers an invertible combining function
©(., .) is used which combines plain text symbols p(n) and
key symbols k(n) to cipher text symbols c¢(n) (Fig. 3).

p(n) = o) —ecm)— || —p0)
T T
k(n) k(n)

Figure 3: Combining function (., .) and its inverse

In chaos-based systems discretized combining operations
have to be invertible as well. Examples of balanced com-
bining functions are binary X O R or modulo addition

c(n) = mod(p(n) + k(n))

as in system E2. An advantage of this so-called inverse
system approach [10] is that a chaos-based key stream gen-
erator can be used which does not need to be invertible and
which can be designed according to prescribed characteris-
tics of the key stream such as uniform distribution [6].

e Rule 1. Do either use suitable chaotic maps which
preserves important properties during discretization
(for block cipher) or a balanced combining function
and a suitable key stream generator (for stream ci-
pher).

3.2. Key space

In order to prevent a successful extended key search the
key space has to be very large and a key space reduction
has to be made impossible. To achieve this rules 2 to 6 are
important.

e Rule 2: Do use large key space!

This can be achieved using a large block length as well as a
large number and a suitable precision of corresponding sen-
sitive system parameters. For example, when encrypting
images one could use a RGB pixel (24 bits) as one symbol
instead of each single byte. This leads to a larger number
of bits for each parameter as e.g. for system E1 in [3].

e Rule 3: Do not useinitial condition of an inverse sys-
tem as part of the key!

In system E1 the key k4 (24 bit integer) is used as initial
condition C(0) for the diffusion operation (1). In decryp-
tion process the inverse operation [3] is described by

I(n) = [¢(n) @ C(n) ® C(n—1) — ¢(n)] mod 2%*. (6)

The key k4 only influences the value of the first pixel if one
round of encryption is used. As an example Fig. 4d) shows
a decrypted image after changing the subkey k4 from 012
to 01 A.
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Figure 4: Test Bitmap (W - H = 256 - 256) for system E1
using key 1234567890123456 and one round of encryp-
tion: a) original, b) encoded and decoded using c) correct
key, d) k4, = 012 — 01A4,e) ks = 34 — 3Aandf)
ke = 56 — 5A

¢ Rule 4: Do avoid simple permutation of identical sys-
tem parameters!

In system E1 [3] a key of 128 bit is used. These bits directly
correspond to six system parameters. The subkeys k5 and
ke (16 bit integers) are used for permutation of the prime
factors of width W and height A of the original image in
order to determine the size of the 3D cube. If W - H is
a power of 2, then this permutation has no influence at all
and thus the key space is reduced by 32 bits. An example
is shown in Fig. 4 €) and f).

e Rule 5: Do use same precision for subkey values and
corresponding system parameters!

In system E1 the subkey k3 is used as initial condition
¢(0) € [0, 1) for the generation of the sequence ¢(n) (2) in
the diffusion operation (1). Conversion of the 24 bits of k3
to a floating point number may reduce the key space for
floating point implementations when short mantissas are
used.

e Rule 6: Do use complex input key transformation!

Often it is possible to analyze the behavior of a subsystem
in dependence of a certain parameter. When key bits are

directly used as parameter bits the determination of this pa-
rameter reduces the key space by the corresponding num-
ber of bits. E.g. in system E1 [3] the analysis of subkeys
as discussed in connection with rules 3 and 4 reduces the
key space from 2128 to 272 bits. Using a complex trans-
formation of the key bits to the parameter bits avoids this
problem. E.g. in [11] it is suggested to use the key bits
as parameters and initial values of another chaotic system,
iterate it a certain number of times and then derive the sys-
tem parameters of the encryption system from the states of
the other chaotic system.

A transformation is particularly suitable which changes
approximately half of the parameter bits when one key bit
is changed as it is often done in classical cryptography.

3.3. Nonlinearity and dynamics

In many cases for chaos-based encryption systems sim-
ple chaotic maps, such as logistic map, piecewise linear
maps or even Markov maps, are used. One reason is that the
properties of these maps, especially statistial ones, can be
calculated or even designed. An example of such a design
is given e.g. in [6]. From a cryptographical point of view
these simple nonlinearities are in general easy to analyse.
In order to increase the amount of work nesseccary for all
cryptographical attacks, the nonlinearity has to be as com-
plex as possible (taking into account computational effort
and time requirements) and its analysis has to be as difficult
as possible. To achieve this rules 7 to 10 are important.

e Rule 7: Do use a dynamical system!

Encryption by a static nonlinear transformation Fj, (elec-
tronic codebook mode, ECB) leads for identical plain text
blocks to identical cipher text blocks. Then the codebook
is easy to analyse, especially if the block size is very small
(often just a single symbol in chaos-based encryption sys-
tems). Furthermore an image encrypted in ECB mode still
provides lots of information about the plain text image as
the redundancy is very high in images. An examples using
the Data Encryption Standard (DES) in ECB mode is given
in [8].

a)—> ®o — b)—> ¢ >
p(n) c(n) p(n) c(n)
Tk tkm)
F,(z(n)) F (z(n)) |«

Figure 5: Modes of operation: a) CFB, b) OFB

This disadvantages of static encoding (ECB mode) can
be avoided by using a dynamical system Fj(z(n)) where
the cipher text block ¢(n) depends on the internal state
z(n) of this dynamical system too. In chaos-based cryp-
tography there exist two approaches: synchronized scheme
(corresponding to cipher feedback mode, CFB, Fig. 5a),
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in classical cryptography) and self-synchronizing scheme
(corresponding to output feedback mode, OFB, Fig. 5b)).

e Rule 8: Do use complex nonlinearities!

Simple nonlinearities can easily be analyzed from an cryp-
tographical point of view. This is demonstrated for the sys-
tem E2 (as shown in Fig. 2) in [7] using different methods
of cryptoanalysis. Combining several of these basic non-
linearities increases the complexity of the nonlinearity. Es-
pecially for self-synchronizing stream ciphers several suit-
able nonlinearities can be added to the dynamical subsys-
tem Fy(z(n)) (see Fig. 5b) as it is suggested e.g. for the
system E2 in [8]. Then is becomes much more complicated
to analyze the nonlinearity even by a chosen plain text or a
differential attack and statistical properties of the encrypted
signal can still be calculated or designed.

e Rule 9: Do modify nonlinearities depending on key
and signal values!

Analysis of a static nonlinearity is much easier then anal-
ysis of a nonlinearity which is changing with time. Pa-
rameterizing the nonlinearity in dependence of the key is
necessary but modifying it in time, e.g. depending on cur-
rent signal values is much better. The latter can be done by
modifying either basic nonlinearities or the combination of
them. In a digital realization of the system E2 (Fig. 2) e.g.
the carry-in bit of the adders can be modified in dependence
on some signal value or bit as suggested in [8].

e Rule 10: Do use several rounds of operation for block
ciphers!

Imagine the system E1 is operated with just one round.
Then the key k4 = C(0) can be determined by a chosen
plain text attack using a black image (represented by a ma-
trix of zeros) as input. As the 3D Baker map only performs
a permutation of the position of the pixel values the input
stream I (n) for the diffusion operation (1) will be zero as
well. In this case the diffusion operation will be simplified
to

Cn)=9¢(n)@&¢n)eCn—-1)=Cn-1) (7)

and thus it holds C'(n) = C'(0) = k4 for all n.

Furthermore the parameters of the 3D Baker map (which
are equivalent to k; and k2) can be determined by a differ-
ential attack. For it a gray input image (Fig. 6a) is used
and in each analysis step just one pixel is modified (e.g.
Fig. 6b). Because the 3D Baker map [3] is piecewise linear
its parameters can be reconstructed based on the relation-
ship between the positions of the modified pixel in the in-
put and the first modified pixel in the encoded image (see
e.g. Fig. 6c¢, using offset 128 for presentation). In a second
round of operation the 3D Baker map will permute the se-
quence C(n) and thus this analysis will not be possible any
more.
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Figure 6: Example images: a) gray, b) one pixel changed to
white, c) difference of encoded images of a) and b) (Offset
128)

4. Summary

In this paper some general design rules for chaos-based
encryption systems have been presented. These rules con-
cern system structure, key space as well as nonlinearity and
dynamics of the encryption system. They should be helpful
to reduce or even to overcome cryptographical weaknesses
of such systems. Importance of these design rules has been
demonstrated on two chaos-based example systems.
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