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Abstract—We propose definitions of discrete Lyapunov

exponent and discrete entropy for permutations on a finite

set. We justify our definitions by proving that in the ‘in-

finite limit’, i.e., when the cardinality M of the set goes

to infinity, the discrete concepts converge to their continu-

ous counterparts for a large class of chaotic maps. Conse-

quently, we say that a discrete-time dynamical system on a

finite-state phase space is discretely chaotic if its discrete

Lyapunov exponent tends to a positive number (or to ∞)

when M → ∞. Possible applications of discrete chaos to

cryptography are also discussed.

1. Introduction

What makes chaotic systems so attractive both for theo-

reticians and practitioners is their random-like behavior —

in spite of being deterministic. As way of illustration, let us

mention that, already in 1949, C. Shannon [1] proposed this

kind of transformations to construct secure cryptosystems.

It is thus no surprise that, when chaos theory flourished in

the nineteen-eighties and -nineties, several cryptosystems

were proposed based on the discretization of chaotic maps.

Viewing how the resulting permutations mix the pixels of

digital pictures [2], one cannot but admit that their ‘confu-

sion’ and ‘diffusion’ properties are seemingly unsurpassed

—in spite of being periodic. The examples could be multi-

plied with the same message: there must be some sense in

which discrete maps may be also called chaotic.

The authors of this communication have tried to come to

grips with the concept of discrete chaos by proposing a first

tool to measure it, namely, the discrete Lyapunov exponent.

As its continuous counterpart, the discrete Lyapunov expo-

nent measures the local (i.e., between neighboring points)

average spreading of the discrete-time discrete-space dy-

namical system considered. Discrete chaos plays an impor-

tant role in numerical computation, cryptography, digital

electronics and communications and, potentially, whenever

a complex continuous phenomenon is implemented on a

finite-state machine. In most modern block ciphers includ-

ing both the former and current standards for commercial

encryption DES and AES, the confusion-diffusion strategy

proposed by Shannon is implemented, roughly speaking,

by means of bit permutations with strong nonlinearity (S-

boxes) on subblocks of the input block and permutations

with fast spreading factor on whole blocks, respectively.

This being the case, the security of all these ciphers relies

ultimately on such permutations delivering the right mixing

and propagation properties. Here is where discrete chaos

comes in: it provides tools like the discrete Lyapunov ex-

ponent and entropy to quantify the said properties. The

design and certification of special-purpose permutations is

just an example of possible and interesting applications of

discrete chaos to cryptography. Others include the design

of cryptologic algorithms, hash functions and the like.

2. The Tools of Discrete Chaos

2.1. The discrete Lyapunov Exponent

Let S = {s1, ..., sM} be a linearly ordered finite set en-

dowed with a metric d(·, ·), and F : S → S be a bijection

or equivalently, an M-permutation. We define the discrete

Lyapunov exponent (DLE) of F as

λF =
1

M − 1

M−1∑
i=1

log
d (F(si+1), F(si))

d (si+1, si)
.

Following the tradition, we will use natural logarithms to

calculate λF . Observe that λF depends on the order and on

the metric d but is invariant under rescaling and, further-

more, has the same invariances as d.

In the examples and applications we will consider below,

F will be a permutation on a subset S of R (for instance, S
= {0, ...,M−1} ≡ ZM) endowed with the Euclidean distance

d(si, s j) =
∣∣∣si − s j

∣∣∣. The case S = Zl
2
, with Zl

2
≡ Z2× ...×Z2

(l times) being the set of binary strings of length k endowed

with Hamming distance, has also interest for cryptographic

applications, but it will not be considered here. Observe

that if S = ZM or S = Zl
2

lexicographically ordered, then

λF ≥ 0.

Example 1. Suppose that M = 2m and define

Fmax(s) =

{
m + k if s = 2k 0 ≤ k ≤ m − 1

k if s = 2k + 1 0 ≤ k ≤ m − 1
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on ZM . The DLE of Fmax is

λFmax
=

m
2m − 1

ln m +
m − 1

2m − 1
ln(m + 1). (1)

It can be shown [3] that Fmax has the largest DLE among

all permutations of the set {0, ...,M − 1}.
Let z j+1 = f (z j), j = 0, 1, ...,M−1, be a typical trajectory

of length M of a one-dimensional chaotic map f : [0, 1]→
[0, 1], such that z j+1 � z j for all j and |zM−1 − z0| < ε.
We define f (zM−1) = z0 and order z j according to the

metric to obtain x j, that is, x0 < x1 < ... < xM−1, so

that xi and xi+1 are neighbors in the metric sense. Define

mi = �xiN�, where N is chosen such that mi � mj for all

i and j. The map f induces then the obvious permutation

FM : {m0, ...,mM−1} → {m0, ...,mM−1} with F(mi) = mj

when f (xi) = x j. The following theorem justifies calling

λFM a discrete Lyapunov exponent.

Theorem 1 [3]: In the above setting, limM→∞ λFM = λ f ,

where λ f is the Lyapunov exponent of f .

Example 2. For the general tent map,

f (x) =

{ x
a 0 ≤ x ≤ a
x−1
a−1

a < x ≤ 1
,

the induced family of M-permutations can be given in

closed form, namely,

FM(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 s = 0

Cl
(

M
A s
)

0 < s ≤ A
Fl
[

M
M−A (M − s)

]
+ 1 A < s ≤ M − 1

where Cl(x) and Fl(x) denote, as usual, the ceiling and floor

of x, a = A/M and s ∈ {0, 1, ...,M−1}. The following table

shows the values of λFM and λ f for the symmetric tent map

(a = 0.5, λ f = ln 2 = 0.693147).

M λF

∣∣∣λ f − λF

∣∣∣
256 0.690440 2.7076 × 10−3

1024 0.692470 6.7690 × 10−4

34012 0.693127 2.0379 × 10−5

Example 3. For the logistic map f (x) = 4x(1− x), 0 ≤ x ≤
1, we get the following table (λ f = ln 2).

M λF

∣∣∣λ f − λF

∣∣∣
64 0.681690 0.011457

128 0.687300 0.005710

512 0.691484 0.001663

Definition: We say that an M-permutation FM on

{0, 1, ...,M − 1} has a perfect nonlinearity if the differences

|F(i + 1) − F(i)|, i = 0, 1, ...,M − 2, take all possible values

1, 2, ...,M − 1.

Note that this definition is weaker than the usual one for

Boolean functions on binary blocks. The following exam-

ple shows the existence of maps with perfect nonlinearity.

Example 4. Let M = 2m and define

Fnon(s) =

{
k if s = 2k 0 ≤ k ≤ m − 1

M − 1 − k if s = 2k + 1 0 ≤ k ≤ m − 1

on ZM . The DLE of Fnon is

λFnon =
1

M − 1
ln(M − 1)!. (2)

2.2. The Discrete Entropy

Our definition of discrete entropy is inspired by the so-

called permutation entropy, that is a concept introduced by

Bandt and Pompe in [4] as a practical complexity measure

for experimental time series. The basic idea calls for com-

paring the values x1 = f (x0), x2 = f (x1), ... on a typical

orbit of length M of a one-dimensional dynamical system

and keeping track of the order patterns appearing with in-

creasing M. Bandt et al. proved in [5] that permutation

metric and topological entropy of piecewise monotone in-

terval maps coincide, respectively, with Kolmogorov-Sinai

(KS) and topological entropy. The result concerning per-

mutation metric entropy and KS entropy was generalized

to ergodic information sources and higher dimensional er-

godic interval maps in [6].

Let F be a bijection on S = {s1, ..., sM} with the lin-

ear ordering < (possibly induced by a metric). Note that

seemingly more general situations, like bijections on prod-

uct sets endowed with the product (or lexicographical) or-

dering, can be reduced to the case we are envisaging here.

Thus, F is an M-permutation on a linearly ordered set.

For 2 ≤ r ≤ M and π the r-permutation

[π(0), π(1), ..., π(r − 1)] (shorthand for 0 	→ π(1), 1 	→
π(1),...), we define (i)

Pπ =
{
s ∈ S : Fπ(0)(s) < ... < Fπ(r−1)(s)

}
, (3)

i.e., Pπ is the set of points s ∈ S such that the orbit segment

{s, F(s), ..., Fr−1(s)} is ordered under < as π (alternatively,

we say that s ‘defines’ the r-permutation π), and (ii)

pπ =
|Pπ|∑
π∈σr
|Pπ| ,

where |·| stands here for cardinality. We will refer to F
also as a substitution, reserving the word permutation for

π. We define the discrete entropy rate of F of rank r, 2 ≤
r ≤ M, (based on the corresponding rate of the permutation

entropy) as

H̄(r)

Π
(F) = − 1

r − 1

∑
π∈σr

pπ log pπ. (4)

For entropy and entropy rate, logarithms to base 2 (and cor-

responding units in bits and bits per symbol, respectively)

are in general preferred to other bases.

Example 5. For the right shift modulo M,

F1 = [1, 2, ...,M − 1, 0],
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we get

H̄(r)

Π
(F1) =

M − r + 1

M(r − 1)
log2

M
M − r + 1

+
1

M
log2 M

for 2 ≤ r ≤ M. In particular, for M = 4 we have

H̄(2)

Π
(F1) = 0.81; H̄(3)

Π
(F1) = 0.75; H̄(4)

Π
(F1) = 0.67.

As for

F2 = [M, 0,M + 1, 1,M + 2, 2, ..., 2M − 1,M − 1],

the substitution on {0, 1, ..., 2M−1}with maximum discrete

Lyapunov exponent (Example 1), we get for M = 2,

H̄(2)

Π
(F2) = 1; H̄(3)

Π
(F2) = 1; H̄(4)

Π
(F2) = 0.67.

We see that H̄(r)

Π
(F1) ≤ H̄(r)

Π
(F2) for r = 2, 3, 4. In particu-

lar, the smaller ranks r = 2, 3 show that F2 is more random

than F1.

Suppose finally that F has non-zero entropy rates of

ranks r = 2, 3, ..., q. The possibly simplest way to encap-

sulate in a single number the information contained in the

whole hierarchy H̄(2)

Π
(F),..., H̄(q)

Π
(F) (without having to dis-

sect F into cycles) consists of taking the arithmetic mean

of it:

hΠ(F) =
1

q − 1

q∑
r=2

H̄(r)

Π
(F).

In this way hΠ(F) takes into account both high and, most

importantly, low and middle ranks on an equal footing; in-

deed, although the number of summands in H̄(r)

Π
(F) grows

as r! (see (4)), the sum of the non-zero terms (before get-

ting multiplied by 1/(r − 1)) actually scales linearly in r,

rendering the different entropy rates of comparable sizes.

Moreover, if we let formally q → ∞, we recover the usual

definition hΠ(F) = limr→∞ H̄(r)

Π
(F), since a convergent se-

quence and the arithmetic mean of their successive terms

have the same limit. We call hΠ(F) the (metric) discrete
entropy (or just the entropy) of F.

Theorem 2 [7]: Let I be an n-dimensional interval and

f : I → I an ergodic map. Let FM be a substitution

on M elements obtained from f , after discretizing I, in a

way similar to Sect. 2.1. Then limM→∞ hΠ(FM) = hKS ( f ),

where hKS ( f ) is the KS entropy of f .

3. Discrete Chaos

For S = {s1, ..., sM} let us consider an arbitrary map F :

S → S (not necessarily bijective). We say that the fixed

point si (i.e., F(si) = si) is an eventually fixed point for s j

if there exists n ≥ 1 such that Fn(s j) = si.

Definition: We say that si is a stable fixed point for the map

F if F(si) = si and si is an eventually fixed point for at least

one of its neighbor points si±1. In a similar way, one can

define stable periodic orbits of period p using F p instead

of F.

We say that a periodic orbit is unstable if it is not stable.

In particular, all periodic orbits (cycles) of permutations are

unstable.

A set LM = {li ∈ R : i = 1, 2, ...,M} is said to be a

(one-dimensional) finite lattice if li+1 = li + ∆ = l1 + i∆ for

1 ≤ i ≤ M−1, where ∆ > 0 can be chosen (by rescaling the

Euclidean metric) to be 1. For example, ZM = {0, 1, ...,M−
1} is a finite lattice. GivenA = {a1, ..., am} ⊂ LM for every

M ≥ M0, we define ∂A = {a1 ± 1, a2 ± 1, ..., am ± 1} to be

the neighboring set ofA in LM (if a1 = l1 or am = lM , then

the neighboring points are l1 + 1 and lM − 1, respectively).

Given now a map FM on LM , M ≥ M0, we say thatA is an

invariant set of FM if FM(A) = A.

Definition: We sayA is an attractor of FM , ifA is invari-

ant under FM and there exists l ∈ ∂A such that FM(l) ∈ A.

LetAM ⊂ LM be an invariant set under the action of the

map FM : LM → LM , M ≥ M0, such that FM restricted to

AM is a bijection and write GM = FM |AM
.

Definition: (i) We say that the map FM is discretely chaotic
on the setAM if limM→∞ λGM > 0. (ii) We say thatAM is a

discretely chaotic attractor for FM if AM is an attractor of

FM and limM→∞ λGM > 0.

In particular, if FM is an M-permutation, then FM is

discretely-chaotic if limM→∞ λFM > 0. The permuta-

tions Fmax and Fnon from Examples 1 and 4 are discretely

chaotic.

Observe that, in strict sense, the concepts of discretely

chaotic map and attractor refer to a family of maps rather

than to a single map. In most applications, FM is certainly

obtained via phase space discretization and truncation of

the orbits of a continuous map f , as in the proofs of Theo-

rems 1 and 2, and therefore it belongs to a family of maps

(generated by f ) by construction. Otherwise, if S = ZM or

a translate, one can always compare λFM to λFmax
and gauge

in this way the ‘distance’ from FM to Fmax —the most dis-

cretely chaotic permutation on ZM .

4. Applications to Cryptography

We will now focus on the cryptographic applications of

discrete chaos and, more concretely, on the quality assess-

ment and performance comparison of S-boxes.

4.1. Discrete Lyapunov exponents

As of this writing, we have analyzed the S-boxes of Rijn-

dael cipher (the winner of the Advanced Encryption Stan-

dard –AES– competition) by means of the discrete Lya-

punov exponent. The cipher is designed for 128, 192 and

256 bit block lengths but, for simplicity, we consider here

the first implementation only. Rijndael applies the follow-

ing transformations:
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i) The ByteSub transformation S (x) is a byte-level S-box

(thus, S : Z8
2
→ Z8

2
) defined as

S (x) = Bx−1 + b,

where x−1 ∈ GL(28) is the multiplicative inverse of x
if x � 0 or 0 if x = 0, B is an 8 × 8 binary ma-

trix A obtained by successively rotating the bits of its

first row B1 j = (1, 0, 0, 0, 1, 1, 1, 1) to the right, and b =
(1, 1, 0, 0, 0, 1, 1, 0)transpose. The ByteSub transformation

defines a permutation F on {0, ..., 255} with λF = 4.01,

while λmax = 4.86 (see (1)) and λnon = 4.55 (see (2)). The

role of the ByteSub transformation is to mix in a strong

nonlinear way the input information.

ii) Let b0,0, ..., b0,3, ..., b3,0, ..., b3,3 be the 16 bytes (128

bits) of the input block. The ShiftRow transformation takes

the words
w0 = (b0,0, b0,1, b0,2, b0,3)

w1 = (b1,0, b1,1, b1,2, b1,3)

w2 = (b2,0, b2,1, b2,2, b2,3)

w3 = (b3,0, b3,1, b3,2, b3,3)

(5)

and returns wi >>> Ci, i = 0, 1, 2, 3, where w >>> C is

the rotation of the sequence w of bytes to the right by C
bytes. The values of Ci are Ci = i, i = 0, 1, 2, 3. The role

of the ShiftRow permutation is just to permute all 16 bytes

of the input block, thus it is a permutation on {0, 1, ..., 15}.
Its DLE turns out to be 0.93, which is substantially smaller

than the maximum one (for M = 16) 2.13.

iii) Given an input block in the form (5), the MixColumn
transformation can be viewed as a linear transformation in

GF(28)4. In fact, if c j = (b0, j, b1, jb2, j, b3, j), 0 ≤ j ≤ 3, is

the jth column of (5), then MixColumn is

c j 	→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ c j,

where the matrix entries are pair of hexadecimal numbers

representing bytes in the usual way. Therefore, MixCol-

umn induces a permutation on {0, 1, ..., 232 − 1}. We have

found the Lyapunov exponent of MixColumn to be 21.49

(λmax ≈ 22.18).

In addition to the analysis of the single transformations,

the behavior of their composition (i.e., of the Rijndael ci-

pher) has been evaluated. To this aim, we assign to each

128 bit block an integer in {0, 1, ..., 2128 − 1} via its bi-

nary representation. The computation of the DLE has been

performed on 7000 iterations of the Rijndael map obtain-

ing 87.04, to be compared to λmax = 88.72 (see (1) with

M = 2128).

4.2. Discrete entropy

As for the applications of discrete entropy, let us illus-

trate them with an example taken from [8]. The 4 × 4 S-

boxes

S 1 = [15, 12, 2, 1, 9, 7, 10, 4, 6, 8, 5, 11, 0, 3, 13, 14]

S 2 = [8, 2, 4, 13, 7, 14, 11, 1, 9, 15, 6, 3, 5, 0, 10, 12]

(the 4-bit number b1b2b3b4 being identified, as usual, with

the decimal number b123 + b222 + b321 + b4) are 0/1 bal-

anced, nonlinear and fulfill the maximum entropy criterion.

But from the discrete entropy point of view, they are quite

different. S 1 consists of two cycles of length 7 and two

fixed points. Its discrete entropies are:

H̄(2)

Π
(S 1) = 0.99; H̄(3)

Π
(S 1) = 1.04; H̄(4)

Π
(S 1) = 0.96;

H̄(5)

Π
(S 1) = 0.84; H̄(6)

Π
(S 1) = 0.70; H̄(7)

Π
(S 1) = 0.58;

and hΠ(S 1) = 0.85. S 2 consists of two cycles of lengths 12

and 4, with

H̄(2)

Π
(S 2) = 0.99; H̄(3)

Π
(S 2) = 1.08; H̄(4)

Π
(S 2) = 1.17;

H̄(r)

Π
(S 2) = 3.59/(r − 1) for r = 5, ..., 12

thus hΠ(S 2) = 0.68. As expected, the discrete entropy of

S 1 is higher and, consequently, it generates more pseudo-

randomness that S 2.

Conclusion

The basic conceptual framework of discrete chaos has

been presented and potential applications to cryptography

have been illustrated with the analysis of some S-boxes —

mainly, those of AES.

References

[1] C.E. Shannon, “Communication theory of secrecy sys-

tems,” Bell Syst. Techn. J. 28, pp. 656-715, 1949.

[2] J. Fridrich, “Symmetric ciphers based on two dimen-

sional maps,” Int. J. Bif. Chaos 8, pp. 1259-1284, 1998.

[3] L. Kocarev, J. Szczepanski, J.M. Amigó, I. Tomovski
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