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Abstract—We review some of the recent work on
chaos-based cryptography. We argue that if a chaotic map
f is used in cryptography, then it should be implemented as
a bijection FM : D → D, where D is a finite set with car-
dinality M, such that, for large M, FM ‘approximates well’
the chaotic map f . Several examples, including chaotic
block cypher and chaotic public-key encryption algorithm,
are given.

1. Introduction

The research on network security has considerably
grown in the last decade. There is a need for using cryp-
tographic tools (algorithms, protocols, etc.) in order to en-
sure privacy in data transfer among users. Recently, new
cryptographic techniques based on chaos theory have been
developed [1, 2, 3, 4, 5, 6]. In this paper we review our
recent work on chaos-based cryptography.

Chaotic systems are defined on real numbers. Any en-
cryption algorithm which uses chaotic maps when imple-
ment on a computer (finite-state machine) becomes a trans-
formation from a finite set onto itself. Because of its wide
dynamic range, the floating-point implementation seems
to be the most appropriate for software realizations (im-
plementation) of chaotic maps. However, there are two
reasons for not using floating-point arithmetic in chaos-
based cryptography. First, floating-point numbers are not
uniformly distributed over any given interval of the real
axis [7]. Furthermore, one may observe the existence
of redundant number representations. Indeed, due to the
normalized calculations in floating-point arithmetic, some
floating-point numbers represent the same real signal value.
Second, the authors think the most important reason, there
are no analytical tools for understanding the periodic struc-
ture of the periodic orbits in the floating-point implemen-
tation of chaotic maps (when implement on a computer all
chaotic maps are periodic: all trajectories are eventually
periodic). On the other hand, when using integers one may
hope if a possible link between number theory and chaos
theory has been established, as in the case of the toral au-
tomorphisms, to understand the structure of the orbits.

2. Chaotic cryptographic primitives

Let f : S → S be an N-dimensional chaotic map. For
simplicity, we assume that the phase space S is either an
N-dimensional cube [0, 1]N or an N-dimensional torus. Let
FM : {0, 1, . . .M − 1}N → {0, 1, . . .M − 1}N be a bijection
which is generated from f (we do not specify here how
FM is defined, however some examples will be presented
bellow).

Definition 2.1 We say that FM is a chaotic cryptographic
primitive if for large M, FM approximates well the chaotic
map f .

Although the above definition is intuitive, it does not say
anything unless the phrase approximates well is precisely
defined. However, this is beyond the scope of the paper,
and therefore, we present only examples.

Example 2.2 Let D = {0/M, 1/M, . . . (M − 1)/M}N and

fM : D→ D

be a bijection induced by f when the phase space [0, 1]N

is discretized (quantized) with {0/M, . . . , (M − 1)/M}N. We
assume that as the discretization becomes finer, or as M
goes to infinity, fM approaches f ; in this sense, we say fM

approximates well f . Clearly, the map fM induces a map
FM : {0, 1, . . .M − 1}N → {0, 1, . . . ,M − 1}N in a natural
way.

Example 2.3 Let X be a set, A a σ-algebra of subsets of
X and µ a positive measure on (X,A). Suppose T is an au-
tomorphism of the space (X,A, µ), i.e., T is a one-to-one
map of X onto itself such that, for all A ∈ A, we have T A,
T−1A ∈ A and µ(A) = µ(T A) = µ(T−1A). We consider
sequences of finite partitions {Pn} of the space X and se-
quences of automorphisms {Tn} such that Tn preserves Pn.
The automorphism Tn preserves the partition Pn, if it sends
every element of Pn into an element of the same partition.

An automorphism T of the space (X,A, µ) possesses
an approximation by periodic transformations with speed
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f (n), if there exists a sequence of automorphisms Tn pre-
serving Pn such that

qn∑
k=1

µ(T P(n)
k �TnP(n)

k ) < f (qn), n = 1, 2, . . . .

where � stands for symmetric set difference and f is a func-
tion on the integers such that f (n)→ 0 monotonically.

Definition 2.4 We say that a cipher (block cipher, stream
cipher, or public-key algorithm) is chaotic if its building
blocks (for example, S-boxes, diffusion transformations,
one-way functions, and so on) are chaotic cryptographic
primitives.

3. Examples of chaotic primitives

3.1. Finite-state tent map

For a positive integer M ≥ 2, let fA : [0,M] → [0,M],
0 < A < M be a re-scaled skew tent, defined as

FA =

{
X/A, (0 ≤ X ≤ A),
(M − X)/(M − A), (A < X ≤ M).

The map FA is one-dimensional, exact, and therefore mix-
ing and ergodic. The Lyapunov exponent λ is given by

λ = − A
M

log
A
M
− M − A

M
log

M − A
M
. (1)

The finite-state tent map FA : {1, 2, . . .M} → {1, 2, . . .M}
is defined as

FA(X) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌈
M
A X
⌉
, (1 ≤ X ≤ A),

⌊
M

M−A (M − X)
⌋
+ 1, (A < X ≤ M).

(2)

Note that FA is a bijection.

3.2. Finite-state Chebyshev maps

Chebyshev polynomial map Tp : R → R of degree p is
defined using the following recurrent relation:

Tp+1(x) = 2xTp(x) + Tp−1(x), (3)

with T0 = 1 and T1 = x. The interval [−1, 1] is invariant un-
der the action of the map Tp: Tp([−1, 1]) = [−1, 1]. There-
fore, the Chebyshev polynomial restricted to the interval
[−1, 1] is a well-know chaotic map for all p > 1: it has a
unique absolutely continuous invariant measure with pos-
itive Lyapunov exponent ln p. For p = 2, the Chebyshev
map reduces to the well-know logistic map. Finite-state
Chebyshev map Fp : {0, 1, . . . ,N − 1} → {0, 1, . . . ,N − 1}
is defined as:

y = Tp(x)(modN), (4)

where x and N are integers.

3.3. Finite-state two-dimensional torus automorphisms

Another prototype of a chaotic map is a torus automor-
phism. An automorphism of the two-torus is implemented
by 2×2 matrix M with integer entities and determinant ±1.
The requirement that the matrix M has integer entities en-
sures that M maps torus into itself. The requirement that
the determinant of the matrix M is ±1 guarantees invert-
ibility.

Let M be a 2-torus automorphism
[

x′
y′

]
= M

[
x
y

]
(mod 1), (5)

where x, y ∈ [0, 1]. Let 2k be the trace (which is an integer)
of the automorphism M. It is well-known that for k > 1
(we will consider only positive k) that the automorphism
M has strong chaotic properties, and in particular, it has a
dense set of unstable periodic orbits.

Finite-state 2d torus map is defined as
(

Y1

Y2

)
=

(
g + 1 g

1 1

) (
X1

X2

)
mod 256, (6)

where X1, X2,Y1,Y2 ∈ PS , and Ps = {0, 1, . . . , 255}. This
map can serve as a diffusion layer because its inverse is
well-defined on the integer space on which cryptographical
transformations are based. A special case g = 1 is known as
the pseudo-Hadamard transform (PHT). The PHT is used
in various cryptosystems because it requires only two addi-
tions in a digital processor.

An example of a finite-state four-dimensional torus is
given by:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Y1

Y2

Y3

Y4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = G

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
X1

X2

X3

X4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ mod 256, (7)

where Xi,Yi ∈ PS (1 ≤ i ≤ 4) and G = (gi j), 0 ≤ gi j ≤ 255
(1 ≤ i, j ≤ 4).

4. Examples of chaotic encryption algorithms

4.1. Substitutions based on the approximation of mix-
ing maps

Let F be a permutation of n-bit blocks and, as usual, de-
note by LPF and DPF the linear approximation probabil-
ity and differential approximation probability of F, respec-
tively (see [8] for precise definitions of these ‘probabili-
ties’). LPF and DPF measure the immunity of the block ci-
pher F to attacks mounted on the corresponding cryptanal-
ysis, immunity being higher the smaller their values. In [8]
we have shown that if F is a cyclic periodic approximation
of a mixing automorphism and some assumptions are ful-
filled, then LPF and DPF get asymptotically close to their
greatest lower bounds 1/2n and 1/2n−1, respectively, thus
obtaining an arbitrarily close-to-optimal immunity to both
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cryptanalyses. Therefore, we have proven, as suggested by
Shannon, that mixing transformations may indeed be used
in encryption systems, providing an alternative to the tradi-
tional algebraic methods.

As an example we consider the 2D torus chaotic map,
for which the elements of the matrix M = (mi j) are

m11 = 587943273, m12 = 185921552200509715,
m21 = 2, m22 = 632447247.

For this map, the corresponding periodic approximation
with n = 18 has the following values of DP and LP:
LP = 0.00002629 with | LP − 2−18 |= 2.25 × 10−5, and
DP = 0.00003052 with | DP − 2−17 |= 2.29 × 10−5.

4.2. Public-key encryption algorithm

Finite-state Chebyshev map has been recently suggested
for generalization of RSA public-key encryption algorithm.
The algorithm consists of two algorithms: algorithm for
key generation and algorithm for encryption.

Algorithm for key generation. Alice should do the fol-
lowing:

1. Generate two large random (and distinct) primes p and
q, each roughly the same size.

2. Compute N = pq and φ = (p2 − 1)(q2 − 1).

3. Select a random integer e, 1 < e < φ, such that
gcd(e, φ) = 1.

4. Compute the unique integer d, 1 < d < φ, such that
ed ≡ 1(modφ).

5. Alice’s public key is (N, e); Alice’s private key is d.

Algorithm for encryption.

1. Encryption. To encrypt a message m, Bob should do
the following:

(a) Obtain Alice’s authentic public key (N, e).

(b) Represent the message as an integer in the inter-
val [1,N − 1].

(c) Compute c = Te(m)(modN) and send to Alice.

2. Decryption. To recover the message m from c, Alice
should do the following:

(a) Use the private key d to recover m = Td(c)(mod
N).

The following property of the finite-state Chebyshev
map holds:

Td(Te(x)) ≡ x(modN).

This is the crucial property used for design public-key en-
cryption algorithm based on finite-state Chebyshev map,
see [9] for details.
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Figure 1: Round function of the 128-bit uniform cipher:
each a1,i 0 ≤ i ≤ 15, is a byte, and the mixing transforma-
tion has branch number 4.

4.3. Block cipher

Recently we have designed a 128-bit chaotic block ci-
pher with the S-boxes defined with the finite tent map
and chaotic mixing transformation defined as finite-state 4-
dimensional torus map [10]. Consider a 128 bit uniform ci-
pher given in Figure 1 for which the mixing transformation
has branch number 4, for the definition of branch number
see [10]. We also consider the Feistel cipher with block di-
agram shown in Figure 2, where the F function is given in
Figure 3. The following theorems are proven in [10]:

Theorem 4.1 Every 4-round differential trail of the uni-
form cipher has at least 16 active S-boxes.

Theorem 4.2 Every 4-round differential trail of the Feistel
cipher has at least 10 active S-boxes.

As calculated in [10], the values of DP and LP for the
chaotic S-box are DP ≤ 2−4 and LP ≤ 2−3, respectively.
We suggest that the cipher has 16 rounds. With the help of
Theorems 4.1 and 4.2, we can estimate the values of DP
and LP for the whole cipher.

• Chaotic uniform cipher – For the uniform cipher with
block diagram shown in Figure 1, we have DP ≤ 2−256

and LP ≤ 2−192.

• Chaotic Feistel cipher – For the Feistel cipher with
block diagram shown in Figure 2, where the F func-
tion is given in Figure 3, we have DP ≤ 2−160 and
LP ≤ 2−120.

For an 8 → 8 S-box one has DP ≥ 2−7 and LP ≥ 2−8.
We did not attempt to optimize the values of DP and LP
for a chaotic S-box and used DP ≤ 2−4 and LP ≤ 2−3.
However, different approaches yield chaos-based S-boxes
with DP ≤ 2−5 and LP ≤ 2−5 [8].

5. Conclusions

In this work we have summarized our recent work on
chaos-based cryptography. Although at theoretical level it
seems that chaotic systems are ideal candidates for cryp-
tographic primitives (see for example the statement proven
in [8] that periodic approximations of mixing maps have
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Figure 3: The F function of the 128-bit Feistel cipher: each
ai,k, 0 ≤ k ≤ 7, is a byte, and the mixing transformation has
a branch number 4.

arbitrary close to optimal immunity to linear and differen-
tial cryptanalysis), at the practical level chaotic maps are
still slower than corresponding conventional cryptographic
algorithms. Thus, for example, chaos-based pubic key al-
gorithm suggested in [9] is slower than RSA, and block
encryption algorithm proposed in [10] is also slower than
the best conventional algorithms, such as AES.
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