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Abstract—It is becoming very important to ensure a sta-
ble supply of energy because of the recent developments in
renewable and decentralized energy. In order to stabilize
the supply of power grids, it is useful to analyze mathemat-
ical models. In the field of nonlinear science, power grids
have been described by phase models and the minimum
coupling strength for global frequency synchronization has
been used as a measure of stability in power grids. Such
studies regard frequency synchronization as the hallmark
of a stable supply. In fact, however, if the coupling strength
is near the synchronization transition point, the supply of
energy is sometimes destabilized. Therefore, a new stabil-
ity criterion is required. In this paper, we take into account
the fact that the phase difference between generators and
substations in a model of real power grids is very small.
We define a modified minimum coupling strength (MMCS)
and calculate it by using the topology of the power grid in
eastern Japan. Further, we identify important links for a
stable supply by the MMCS.

1. Introduction

In order to reduce CO2 emissions, renewable and decen-
tralized energy such as wind and photovoltaic (PV) energy
plays an essential role. Particularly in Japan, the move-
ment for denuclearization has received a fresh impetus af-
ter the 2011 Tohoku earthquake and tsunami. Therefore,
renewable and decentralized energy is becoming increas-
ingly important.

The supply of such energy is more unstable than that of
nuclear/thermal energy. Hence, it is very important to en-
sure a stable supply of energy. In the field of electrical
power engineering, the balance between demand and sup-
ply has been analyzed [1]. Since frequency synchroniza-
tion of voltage is necessary for a stable energy supply, var-
ious mathematical models have been used to analyze the
frequency stability of generators [2].

However, such approaches are too complicated to ana-
lyze the global stability. Therefore, in the field of non-
linear sciences, simple models that extract crucial proper-
ties have been adopted. In early studies, various aspects

of power grids were investigated [3–5]. Among others, the
Kuramoto-like phase oscillator model as an explanation of
power grids is a breakthrough [6–9]. In Refs. [7–9], the
minimum coupling strength for global frequency synchro-
nization was used as a measure of the power grids’ stability.
Recently, the robustness of power grids against perturba-
tion was analyzed, using the Kuramoto-like model [10].

Such studies assumed that a stable supply is achieved if
frequency synchronization is globally stable. In fact, how-
ever, if the coupling strength is near the synchronization
transition point, the supply of energy is sometimes desta-
bilized, because the phase difference between power grids
and substations is too large for power grids to supply elec-
tricity stably. Since this destabilization mechanism cannot
be captured by the conventional framework based on the
synchronization transition, a new stability criterion is re-
quired.

In this paper, we take into account the fact that the phase
difference between generators and substations in real power
grids is very small. We define a modified minimum cou-
pling strength (MMCS) and calculate it by using the topol-
ogy of the power grid in eastern Japan. Further, we identify
important links for a stable supply by the MMCS.

The remainder of this paper is organized as follows.
First, in Section 2, we introduce a phenomenological phase
model for power grids. Section 3 describes the model set-
tings of the power grid in eastern Japan that we replicated.
Then, in Section 4, we clarify that frequency synchroniza-
tion is not sufficient for a stable supply and introduce the
MMCS. Section 5 is devoted to showing the influence of
removing links and identifying important links for stable
supply. The conclusions are summerized in Section 6.

2. Phase Model of Power Grids

It is necessary to regulate voltage and electrical power
in power grids. One of the crucial dynamical properties of
power grids is their frequency synchronization of voltage.
If the phase difference among nodes is constant, that is,
their frequency is synchronized, the power flow from one
node to another is constant. Normally, the frequency of the
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voltage is constant. The amplitude of the voltage can be
considered to be the same in any place while keeping track
of the power flow [6].

We denote the phase of voltage by θ and regard the gen-
erators and substations as phase oscillators. The thermal or
mechanical power generated in a generator, Ps, is divided
into the following three components:
• Dissipated power owing to the rotation of the turbines,

Pd = γθ̇
2 (γ: the damping coefficient)

• Accumulated kinetic energy per unit time, Pa = Iθ̇θ̈
(I: the inertia moment)
• Transmitted power from element i to j, Pt =

−PMAX
i j sin(θ j − θi)

If element i to j is connected, we set PMAX
i j = PMAX . If

element i to j is not connected, we set PMAX
i j = 0. From the

conservation law of energy [6, 8],

Ps = Pd + Pa + Pt, (1)

we can represent their behavior with swing equations. In
element i, Eq. (1) is rewritten as

Pi = γiθ̇i
2
+ Iiθ̇iθ̈i −

∑
j

PMAX
i j sin(θ j − θi), (2)

If element i is a substation, Pi is negative. Turbines pro-
duce electrical power with a frequency that is close to the
standard frequency Ω (=50/60 Hz). Therefore, if we write

θi = Ωt + ϕi, (3)

we can assume ϕ̇i ≪ Ω. By inserting Eq. (3) into Eq. (2)
and using this assumption, we obtain

ϕ̇i =

 Pi

2γiΩ
−Ω

2

− Ii

2γi
ϕ̈2

i +
1

2γiΩ

∑
j

PMAX
i j sin(ϕ j−ϕi). (4)

We assume γi and Ii to be the same for all nodes and denote
them by γ and I, respectively. By variable transformation,
we obtain

ϕ̇i = ωi − αϕ̈i + σ
∑

j

ai j sin(ϕ j − ϕi), (5)

where ai j is an element of the adjacency matrix, i.e., ai j = 1
iff elements i and j are connected; otherwise, ai j = 0. Here,
ωi =

Pi
2γΩ −

Ω
2 is the natural frequency of element i, and

σ = PMAX

2γΩ is the coupling strength.

3. Model Settings of the Power Grid in Eastern Japan

We replicated the topology of the power grid from maps
published by Tokyo Electric Power Company Inc.1 and
Tohoku Electric Power Company Inc.2. Figure 1 shows
the topology. It was produced with the Pajek software.3

1http://www.tepco.co.jp/ir/tool/annual/index-j.html
2http://www.tohoku-epco.co.jp/ir/report/annual report/index.html
3http://pajek.imfm.si/doku.php?id=pajek

We regard generators and substations as nodes of the graph
structure. We define N+, N0, N−, and N = N+ + N0 + N−

as the number of generators, branch points of power lines,
substations, and nodes, respectively. In the eastern Japan
network, N+ = 47, N0 = 67, N− = 120 and thus N = 234.
We normalize the natural frequency ωi as follows:

ωi =


1

N+ , node i is a generator
0, node i is a branch point
− 1

N− . node i is a substation
(6)

North Tokyo

Aomori

b a

ced

Figure 1: Topology of the power grid in eastern Japan that
we replicated.

4. Minimum Coupling Strength for Stable Supply

In order for the frequency of all the nodes to be synchro-
nized, θ̇i = Ω, that is, ϕ̇i = ϕ̈i = 0 must be satisfied for all i.
Therefore, iff σ is so large that

0 = ωi + σ
∑

j

ai j sin(ϕ j − ϕi), for all i (7)

can hold, all the nodes can be synchronized. There is a
critical value of the coupling strength σC . Iff σ ≥ σC , fre-
quency synchronization comes into existence. It is called
minimum coupling strength, which has been used as a mea-
sure of the power grids’ stability [8]. If σ is near σC , the
phase difference among the nodes is too large for power
grids to supply electricity stably. In fact, however, the
phase difference among the nodes is very small in real
power grids [11]. In this paper, we introduce a modi-
fied minimum coupling strength (MMCS). If the coupling
strength is larger than the MMCS, the phase difference is
small enough to supply electricity stably.

4.1. Minimum Coupling Strength for Frequency Syn-
chronization

We numerically test the critical value by calculating the
effective frequency dispersion defined as follows:

r =

√√√
1
N

N∑
i=1

[ϕ̇i − ⟨ω⟩]2, (8)

where ⟨ω⟩ is the mean value of the natural frequency ωi.
In this case, ⟨ω⟩ = 0. We define the critical value σC as
the minimum value satisfying r = 0. In the eastern Japan
network, we numerically obtained σC ≈ 0.047.
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4.2. Frequency Synchronization is NOT Sufficient For
Stable Supply

Previous studies that use σC [6–9] have regarded fre-
quency synchronization as the hallmark of a stable supply.
In fact, however, if the coupling strength is near σC , the
supply of energy is sometimes destabilized, because the
phase difference among the connected nodes is too large.
It is empirically known that if the phase difference is large,
frequency synchronization collapses when a drastic voltage
drop occurs. This mechanism is analyzed by the equal area
method [11].

4.3. Modified Minimum Coupling Strength

As discussed above, in order to supply electricity stably,
not only frequency synchronization but also a sufficiently
low phase difference is required. Therefore, we denote by
σM an MMCS, which is the minimum value of the coupling
strength satisfying both frequency synchronization and the
condition that the phase difference should be less than 10◦.
From now on, we regard σM as a measure of the power
grids’ stability.

For the eastern Japan network, we obtained σM ≈ 0.313.

5. Identification of Important Links in Power Grids in
Eastern Japan

5.1. Identification Using the MMCS

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0  50  100  150  200  250  300

σ
M

M
M

C
S

 σ
M

’ (
i )

link index i

ba

c d
e

Figure 2: The effect of the link removal. The horizontal
axis represents the removed link index i. The vertical axis
representsσ′M(i), which is the MMCS after the removal of a
link i. σM ≈ 0.313 denotes the MMCS before the removal.

Many studies have analyzed the robustness of power
grids [8,12–14]. In these studies, the impact of the removal
of links or vertices has been studied. We define the link
index as i. In the eastern Japan network, the number of the
links is 324, i.e., i ∈ {1, 2, . . . , 324}. We remove one link i
and recalculate the MMCSσ′M(i). σ′M(i) is the MMCS after
the removal of a link i. As the MMCS increases, maintain-
ing a stable supply becomes difficult. Therefore, the larger

σ′M(i) is, the more important the link i is for a stable sup-
ply. Hence, by calculating σ′M(i), the importance of each
link within the power grid will be clarified.

Figure 2 shows the influence of the link removal. The
horizontal axis represents the removed link index i. The
vertical axis represents σ′M(i). Now we denote links a, b, c,
d, and e in Fig. 2 by ia, ib, ic, id, and ie, respectively. Labels
a-e correspond to the links in Fig. 1, respectively. σ′M(it)
(t = a, b, c, d, e) are larger than the other σ′M(i). This im-
plies that the impact of the removal of these links is higher
than the impact of the removal of the other links. There-
fore, these links are more important than the other links
with respect to a stable supply.

5.2. Comparison of the MMCS and the AMCS

From a practical point of view, σM can be used to iden-
tify which links are important for a stable supply. On the
other hand, the previous work [8] suggests the approximate
minimum coupling strength (AMCS) σA and asserts that
σA can be used to identify which links are important for a
stable supply. In this subsection, we compare the MMCS
and the AMCS.

The AMCS can be calculated by considering all the pos-
sible divisions of the noes in a power grid into two non-
overlapping sets S and S̄ . The definition of σA is given
by

σA = max
S

|∑i∈S ωi|∑
i∈S , j∈S̄ ai j

. (9)

The AMCS σA is expected to be close to the critical
value for frequency synchronization σC . In fact, this was
shown in European networks [8]. We confirmed this fact
also in the eastern Japan network. We calculated σA in the
eastern Japan network and the result was σA = 0.0426.
This is near the real minimum coupling strength σC ≈
0.047 as previously explained.

We remove one link i and recalculate both the AMCS
σ′A(i) and the MMCS σ′M(i). σ′A(i) is the AMCS after the
removal of a link i. Figure 3 shows a scatter plot of σ′A(i)
and σ′M(i). The parameter is the link index i.

In region B in Fig. 3, the AMCS underestimates the
importance of the links. Although σ′A(i) ≈ σA, σ′M(i) is
considerably larger than σM . On the other hand, in region
C in Fig. 3, the AMCS overestimates the importance of
the links. Although σ′M(i) ≈ σM , σ′A(i) is larger than σA.
Therefore, for the purpose of identifying the importance of
the links, the MMCS is more appropriate than the AMCS.

In region A in Fig. 3, both the AMCS and the MMCS
can identify the importance of the links. In this case, the
increases in σ′M(i) and σ′A(i) are positively correlated. If
one removes the link a, b, c, d, or e, σ′A(i) changes from σA

as σ′M(i) changes from σM . The reason why σ′A(i) changes
by the link removal is explained as follows. We define an
element of the adjacency matrix after the removal of a link
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Figure 3: Correlation between the AMCS and the MMCS.
The parameter is the link index i. The horizontal axis rep-
resents σ′A(i). The vertical axis represents σ′M(i). The ver-
tical and horizontal lines at σM ≈ 0.313 and σA ≈ 0.0425
denote the MMCS and the AMCS before the removal, re-
spectively.

i as

a′k j(i) =
{

0, corresponding link index is i
ak j. otherwise (10)

We also define a′k j(0) = ak j. If one sets S ′∗(i) as

S ′∗(i) = arg max
S

|∑k∈S ωk |∑
k∈S , j∈S̄ a′k j(i)

, (11)

σ′A(i) is expressed as

σ′A(i) =
|∑k∈S ′∗(i) ωk |∑

k∈S ′∗(i), j∈S̄ ′∗(i) a′k j(i)
. (12)

Now S ′∗(0) = S ∗ and σ′A(0) = σA hold. The essen-
tial meaning of S ∗ and S ′∗(i) is the following. They con-
tain either many generators or many substations (|∑i∈S ωi|).
Moreover, the number of links connecting S ′∗(i)(S ∗) and
S̄ ′∗(i)(S̄ ∗) is small (

∑
k∈S , j∈S̄ a′k j(i)). The latter condition is

called minimum cut. The rectangle in Fig. 1 shows the set
S ∗ for the original power grid network. If one removes ei-
ther a or b from the network，S ′∗(i) turns into the nodes
indicated by the ellipse. Similarly, if one removes one of
the nodes c, d, and e，S ′∗(i) turns into the nodes indicated
by the hexagon. In summary, the links that change σ′M(i)
from σM dramatically also change S ′∗(i) from S ∗ and the
shift in S ′∗(i) causes the change in σ′A(i). Therefore, a dras-
tic change in σ′M(i) is closely related to σ′A(i).

6. Conclusion

In this paper, we have taken into account the fact that the
phase difference between generators and substations in real
power grids is very small. We have defined a modified min-
imum coupling strength (MMCS) and have calculated it by

using the topology of the power grid in eastern Japan. Fur-
ther, we have identified important links for a stable supply
by calculating the MMCS.

We have found that the MMCS is more appropriate than
the AMCS for the purpose of identifying the importance of
links, although the AMCS is also useful in some cases.
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