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Abstract—We will report on our findings concerning
generalization of the Pyragas feedback technique by intro-
ducing variability in the delays. In addition to the theoreti-
cal basis for the method, several examples will be provided
starting from the simplest case of an unstable steady state
of focus type, to stabilization of unstable points and orbits
in several standard systems, and finally an experimental re-
alization with an electronic circuit. Variability of the delay,
whether temporal or distributed, deterministic or not, leads
to significant extension of the domain of successful stabi-
lization and increased robustness.

1. Introduction

Control theory is an important subject of interest in many
engineering applications. Beyond the developments based
on classical approaches, comparatively recently, new ideas
evolved closely related with the studies of deterministic
chaos. A prominent place was gained by the proposal of
Pyragas [1] to introduce in the equations of the system un-
der consideration a feedback proportional to the difference
of the current state of the system at instant t and its state
at some instant in the past t − τ, where τ is the time-delay,
hence the name of the method time-delayed feedback con-
trol (TDFC). This approach was intended to achieve sta-
bilization of unstable periodic orbits which are abundant
in chaotic systems, but proved to be useful also for sta-
bilization of unstable fixed points. Detailed exposition of
the field is available in the voluminous Handbook of Chaos
Control [2]. The method obtained experimental verification
and was applied to various theoretical models. Successful
extensions of the method were based on the introduction
of additional feedback terms with the same structure but
with different delays. In the following we shall deal with
variable delays (VTDFC).

2. Stabilization of unstable focus

Firstly, we consider the generic case [3] of an unstable
focus at the origin described with the following equations

ẋ = λx + ωy,

ẏ = −ωx + λy, (1)

where λ and ω are positive constants. Eigenvalues of the
system are Λ = λ ± iω, which is characteristic for an un-
stable focus. We assume that the above system is a lin-
earization in the vicinity of the fixed point x∗ given by
f(x∗) = 0 of some general two-dimensional dynamical sys-
tem ẋ = f(x), where x(t) = Col[x(t), y(t)].

In order to stabilize the system, we introduce an addi-
tional force which transforms equations (1) into

ẋ = λx + ωy + K[x(t − τ(t)) − x(t)],
ẏ = −ωx + λy + K[y(t − τ(t)) − y(t)], (2)

where K is the feedback gain. Instead of the more com-
mon constant delay, we have variable delay given by some
function τ(t). The additional terms in (2) do not change the
position of the fixed point, but the additional parameters,
K and those characterizing τ(t), if properly chosen could
change the stability properties of x∗ in a desirable way.

In presence of variable delay τ(t), the usual exponential
ansatz x(t) ∼ exp(Λt), y(t) ∼ exp(Λt), does not produce an
outright equation for the eigenvalues Λ. However, assum-
ing that τ(t) is periodic and changing with high frequency,
we can replace exp(Λτ(t)) with its average value. Taking
as an example that τ(t) changes linearly and periodically
between the limiting values T0 ± ε, where T0 is the average
value of the delay and ε is the amplitude of the delay vari-
ation, one finds the following equation for the eigenvalues
Λ,

λ ± iω = Λ + K
(
1 −

sinh(Λε)
Λε

exp(−ΛT0)
)
. (3)

One arrives at the same equations by applying the theo-
rem obtained by Michiels et al. [4], which connects asymp-
totic stability properties of systems with variable time-
delay with some related system with distributed delays and
equivalent stability.

Eq. (3) has an infinite number of complex roots. The
steady state at x∗ is stable only if all the roots have neg-
ative real parts. Significant enlargements of domains of
successful control obtained by VTDFC are shown in Fig.
1. Similar results are obtained when VTDFC is applied to
the Lorenz system [5]. When more than one feedback term
is applied [6], analogous extensions [7] with variable de-
lay tend to enlarge the stabilization domains. Amplitude
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Figure 1: Domains of control in the (K,T0)-plane for ε = 0
(a), ε = 0.15 (b), ε = 0.5 (c) and ε = 1 (d). Time-delay
changes as a sawtooth wave with ν = 10. The parameters
are λ = 0.1 and ω = π.

death of coupled oscillators under influence of variable and
distributed delays was studied in references [8, 9].

3. Stabilization of unstable periodic orbits

One of the merits of the Pyragas method is that the con-
trol is noninvasive, that is the feedback force vanishes when
stabilization is achieved. This requirement is more de-
manding when it comes to stabilization of unstable peri-
odic orbits. Therefore the delay has to be a multiple of the
period of the unstable orbit. Therefore, if we want to intro-
duce variability in the delay, it has to jump between integer
multiples of the basic period.

Now we consider the chaotic Rössler model [10] defined
with the equations

ẋ(t) = −y(t) − z(t),
ẏ(t) = x(t) + 0.2y(t) + K(t)[y(t − (t)) − y(t)], (4)
ż(t) = 0.2 + z(t)[x(t) − 5.7].

The last term in the second equation represents the feed-
back, where as an additional feature, variability of the gain
factor K(t) is introduced. The shortest unstable periodic
orbit for the Rössler system has a period T1 = 5.88.

The simplest choice for the varying time delay is to have
delays equal to T1 and 2T1 for consecutive duration of time
interval Tp each, which are repeated alternatively. Keeping
the gain K constant, numerical simulations show that there
is an increase of the control interval for the gain by hav-
ing variable time delay. The control interval for the gain is
largest when Tp = 2T1, that is when the period of modu-
lation is twice the period of the unstable orbit. Additional
enlargement of the control interval can be achieved by in-
troducing variations in the control gain K(t), for example

by changes between two constant values K and K/2, si-
multaneous with the changes of the delay [7, 11].

4. Desynchronization of Hindmarsh-Rose oscillators

It is thought that the reason behind some pathological
disorders in patients with brain related diseases is due to
synchronized neural activity in specific locations of the
brain. As an appropriate model to describe the charac-
teristic firing of neuronal cells in the brain, it is common
to use, among others, the Hindmarsh-Rose (HR) oscilla-
tors [12]. Here we shall follow in the footsteps of Rosen-
blum and Pikovsky [13] who considered a large number
of identical HR-oscillators coupled through the mean field
X(t) = 1

N
∑N

i=1 xi(t) created by one of the oscillators com-
ponents. The equations of motion for the system of HR-
oscillators are the following

ẋi = yi − x3
i + 3x2

i − zi + 3 + F1(t) + F2(t),
ẏi = 1 − 5x2

i − yi, (5)
żi = 0.006[4(xi + 1.56) − zi].

Here F1(t) = KMF X(t) defines the interaction of each of
the oscillators with the other oscillators through their mean
field, where KMF is the coupling strength. For a sufficiently
strong coupling, the system, starting from random initial
positions for the individual oscillators, evolves towards a
synchronized state with non-zero order parameter.

To eliminate this undesirable situation, control feedback
in the Pyragas form is applied, represented with the last
term of the first of equations (5). It is expressed in terms of
the mean field

F2(t) = K[X(t − τ(t)) − X(t)], (6)

and contains variable delay. To quantify the influence of the
feedback, a suppression factor S is introduced [13], defined
as

S = [var(X)/var(XF)]1/2, (7)

where var(X) and var(XF) are the variances of the mean
field, without and with feedback, respectively. The numer-
ical calculations were performed [14] for a set of 1000 HR-
oscillators and the mean field coupling was set to KMF =

0.08. Without feedback one observes oscillations of the
mean field with an average period T = 175. In Fig. 2
we represent by shaded scale the suppression factor S as
a function of the control gain K and the delay time τ nor-
malized by T . The panel at the top shows the results for
the case of constant delay τ, while the panel at the bottom
provides results from the calculations with variable delay
defined by τ(t) = τ + ε sin(νt), where ε = 40, ν = 10 and
constant τ ≥ ε. It is evident that the domains of suppres-
sion of the mean field oscillations are significantly enlarged
and have become more profound. It was also observed
that the desynchronization is achieved in shorter time. The
drawback is in the need to increase the minimal gain to ob-
tain desynchronization, which could be reduced by proper
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Figure 2: Suppression factor of the mean oscillations in the
plane parametrized by the feedback gain K and constant
(panel at the top) and average time delay τ (panel at the
bottom). Parameters used in the calculation are provided in
the text. Color codes of suppression factor are given on the
right side of the panels.

choice of the type of time-delay modulation. Even more
substantial enlargement of the domains of efficient suppres-
sion is obtained with application of two feedback terms (6)
with different average delay times τ1,2.

5. Experiment

The effect of variable delay on the Pyragas control
method was recently demonstrated in an electronic circuit
experiment. The nonlinear element of the oscillator was
a diode with a characteristic, which is well modelled by
a piecewise linear function with two branches. The setup
was already used in other context [15], where it has been
described in detail. There are three differential equations
governing the dynamics of the circuit, one of them con-
taining the nonlinearity. In the voltage range used in the
experiment, only the fixed point at the origin plays a role.
The control parameter in the equations is denoted by the
letter a.

The device for accomplishing variability of the delays

has a digital storage for signals received from the electronic
circuit. They are sampled with a clock frequency, which
can be changed in a prescribed manner as a function of
time f (t) and therefore changing the delay-time. The infor-
mation is moved through the device on the first-in-first-out
basis (FIFO). Denoting by N the capacity of the storage,
one can derive the relationship

N =

∫ t

t−τ(t)
f (t′) dt′ , (8)

where τ(t) is the current delay-time. From there one can
find that a sawtooth wave for τ(t) arises if f (t) changes pe-
riodically between two constant values f1 and f2.

In the experiment, it was assumed that the stabilization
of the fixed point has been successful if the oscillations are
below 0.1 V, which is about two orders of magnitude less
than the characteristic amplitudes for the uncontrolled os-
cillations. The measurements have clearly indicated con-
siderable enlargements of the domain of stabilization. This
was also the case when distributed delays were applied
[16].

In another experiment, similar improvements are demon-
strated in the stabilization of periodic orbits. We consider
the same electronic circuit in the domain of parameters
without stable periodic orbits and use two delay lines with
different constant delays, τ1 = 3Tp and τ2 = 4Tp, where
Tp is the period of the basic unstable periodic orbit. The
control term is chosen in the form

F(t) = K[(X(t − τ1) + X(t − τ2))/2 − X(t)], (9)

where X(t) is one of the components of the system. This
can be viewed as distributed delay defined with two δ-
functions concentrated at τ = τ1 and τ = τ2 or alternatively
as variable time-delay with very fast switching between
two delay times. The results are shown on the right panel
in Fig. 3 in the (a,K)-plane. For comparison, on the left
panel in Fig. 3 are depicted the experimental results for the
conventional Pyragas control with only a single delay line
with constant time-delay τ1 = 3Tp. The panel in the middle
of Fig. 3 provides results obtained in a similar experiment
using the method of extended time-delay feedback control
(ETDFC) [17] with memory parameter R = 0.5.

6. Conclusions

Our analytical and numerical studies were confirmed by
performing experiments and have shown considerable im-
provements in the control of unstable steady states and un-
stable orbits when the time-delay feedback technique is ex-
tended to variable or distributed delays. The main advan-
tage of the variability is in the significant enlargement of
the domains of successful control and in the disposal of the
need for fine-tuning of the control parameters. At the same
time the robustness also has favorable gains. It was demon-
strated that the method is applicable for different systems
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Figure 3: Successful control of periodic orbit is defined
by standard deviation of X(t − Tp) − X(t) smaller than 0.1
V. Results obtained by TDFC (left panel), ETDFC (middle
panel), VTDFC (right panel).

described with few equations and complex systems of in-
teracting oscillators. The method is efficient even in the
case when other methods do not work, for example when
delay times are large.

A characteristic feature of the Pyragas method is its non-
invasiveness, which remains valid in the current extension.
The control feedback tends to vanish with the approach to
stabilized state of the system, whether steady or periodic.
Prior knowledge of the unstable steady state is not required,
while in the case of unstable orbits, one needs to know the
period of the orbit, but not the orbit itself.

The influence of the modulation of the delay-times de-
pends on the particular system under consideration. It is not
a monotonic function of the amplitude of modulation. This
opens up the question for optimal choice of the modulation
in eventual applications. The same applies for distributed
delays.

Both resonance effects and interference play a role in the
observed phenomena. Signs of resonance are visible when
there is interplay between some internal frequency (of the
periodic orbit or the torsion of the fixed point) and the mod-
ulation frequency of the time-delayed feedback. Exami-
nation of the equations for the eigenvalues shows analogy
with interference experiments from single and double slit
[16].
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