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Abstract—We demonstrate that time-delayed feedback
control can be improved by adaptively tuning the feed-
back parameters, using the speed-gradient method of con-
trol theory. For a delay-coupled network of Stuart-Landau
oscillators (normal form of supercritical Hopf bifurcation)
we show that by adaptively tuning the coupling phase, as
well as the coupling strength and the delay time, one can
easily control the stability of different synchronous peri-
odic states, namely in-phase, cluster, or splay states. Our
results are robust even for slightly nonidentical elements of
the network.

1. Introduction

Time delays arise naturally in many complex systems
and networks, for instance in neural networks or coupled
lasers, as delayed coupling or delayed feedback due to fi-
nite signal transmission and processing times. Such time
delays can either induce instabilities, multistability, and
complex bifurcations, or suppress instabilities and stabilize
unstable states. Thus, they can be used to control the dy-
namics [1, 2]. Here we propose to use adaptive control
schemes based on optimizations of cost or goal functions
[3, 4] to find appropriate control parameters. In particular,
we apply adaptive control to synchronization in networks
[5]. The existence and stability of various synchronous
states, i.e., in-phase, cluster, or splay states, in networks
of delay-coupled Stuart-Landau oscillators was studied by
Choe et al. [6]. This Stuart-Landau system arises natu-
rally as a generic expansion in complex variables in the
center manifold near a Hopf bifurcation and is therefore
often used as a paradigm for oscillators. The complex cou-
pling constant that occurs in networks of Stuart-Landau os-
cillators consists of an amplitude and a phase. Such phase-
dependent couplings have also been shown to be impor-
tant in overcoming the odd-number limitation of time-delay
feedback control [7, 8, 9] and in anticipating chaos syn-
chronization [10]. Furthermore, it was shown in Refs. [6]
that the value of the coupling phase is a crucial control pa-
rameter in these systems, and by adjusting this phase one
can deliberately switch between different synchronous os-
cillatory states of the network.

2. Network model

Consider a network of N delay-coupled oscillators

ż j(t) = f [z j(t)] + Keiβ
N∑

n=1

a jn[zn(t − τ) − z j(t)] (1)

with z j = r jeiϕ j ∈ C, j = 1, . . . ,N. The coupling matrix
A = {ai j}

N
i, j=1 determines the topology of the network. The

local dynamics of each element is given by the normal form
of a supercritical Hopf bifurcation, also known as Stuart-
Landau oscillator,

f (z j) = [λ + iω − (1 + iγ)|z j|
2]z j (2)

with real constants λ, ω , 0, and γ. In Eq. (1), τ is the
delay time. K and β denote the amplitude and phase of the
complex coupling constant, respectively.

Synchronous in-phase (or zero-lag), cluster, and splay
states are possible solutions of Eqs. (1) and (2). They ex-
hibit a common amplitude r j ≡ r0,m and phases given by
ϕ j = Ωmt + j∆ϕm with a phase shift ∆ϕm = 2πm/N and
collective frequency Ωm. The integer m determines the spe-
cific state: in-phase oscillations correspond to m = 0, while
splay and cluster states correspond to m = 1, . . . ,N−1. The
cluster number d, which determines how many clusters of
oscillators exist, is given by the least common multiple of m
and N divided by m, and d = N (e.g., m = 1), corresponds
to a splay state.

The stability of synchronized oscillations in networks
can be determined numerically, for instance, by the master
stability function [11]. This formalism allows for a sepa-
ration of the local dynamics of the individual nodes from
the network topology. Within the master stability approach
general properties of synchronization in delay-coupled net-
works have been discussed for zero-lag synchronization
and large delay [12], and for cluster or group synchroniza-
tion [13]. In the case of the Stuart-Landau oscillators it is
possible to obtain the Floquet exponents of different cluster
states analytically with this technique [6]. By these means
it has been demonstrated that the unidirectional ring config-
uration of Stuart-Landau oscillators exhibits in-phase syn-
chrony, splay states, and clustering depending on the choice
of the control parameter β. For β = 0, there exists multi-
stability of the possible synchronous states in a large pa-
rameter range. However, for certain values of the coupling
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phase β = Ωmτ − 2πm/N according to a particular state
m, this synchronous state can be shown analytically to be
monostable for any values of the coupling strength K and
the time delay τ. In the following, an adaptive algorithm is
used to find optimal values of the control parameters K, β,
and τ by automatic adaptive adjustment.

3. Speed-gradient method

We use the speed-gradient (SG) method [3] as an adap-
tive control scheme for the general nonlinear dynamical
system

ẋ = F(x, u, t) (3)

with state vector x ∈ Cn, input (control) variables u ∈ Cm,
and nonlinear function F. Define a control goal

lim
t→∞

Q(x(t), t) = 0, (4)

where Q(x, t) ≥ 0 is a smooth scalar goal function.
In order to design a control algorithm, the scalar func-

tion Q̇ = ω(x, u, t) is calculated, that is, the speed (rate) at
which Q(x(t), t) is changing along trajectories of Eq. (3).
Then a differential equation is set up for the self-adaptive
adjustment of the input variables u

du
dt

= −Γ∇uω(x, u, t), (5)

where Γ = ΓT > 0 is a positive definite gain matrix.
The idea of this algorithm is the following. The term

−∇uω(x, u, t) points to the direction in which the value of Q̇
decreases with the highest speed. Therefore, if one forces
the control signal to ”follow” this direction, the value of Q̇
will decrease and finally be negative. When Q̇ < 0, then Q
will decrease and, eventually, tend to zero.

We shall now apply the speed-gradient method to net-
works of Stuart-Landau oscillators. First, since the cou-
pling phase β is the crucial parameter that determines sta-
bility of the possible in-phase, cluster, and splay states, we
use this control parameter as the input variable u. Set-
ting u = β, x = (z1, . . . , zN) and Γ = Γβ, Eq. (1) takes
the form of Eq.(3) with state vector x ∈ CN and in-
put variable β ∈ R, and nonlinear function F(x, β, t) =

[ f (z1), . . . , f (zN)] + Keiβ[Ax(t − τ) − x(t)].
The SG control equation (5) for the input variable β then

becomes

dβ
dt

= −Γβ
∂

∂β
ω(x, β, t) = −Γβ

(
∂F
∂β

)T

∇xQ(x, t), (6)

where Γβ > 0 is now a scalar.

4. Zero-lag synchronization

To apply the SG method for the selection of in-phase
(zero-lag) synchronization we need to find an appropriate
goal function Q. It should satisfy the following conditions:

the goal function must be zero for an in-phase synchronous
state and larger than zero for other states. Hence, a simple
goal function can be introduced by considering a function
based on the Kuramoto order parameter

R1 =
1
N

∣∣∣∣∣∣∣∣
N∑

j=1

eiϕ j

∣∣∣∣∣∣∣∣ . (7)

It is obvious that R1 = 1 if and only if the state is in-phase
synchronized. For other cases we have R1 < 1. Using this
observation we can introduce the following goal function

Q0 = 1 −
1

N2

N∑
j=1

eiϕ j

N∑
k=1

e−iϕk . (8)

Figure 1: Adaptive con-
trol of in-phase oscilla-
tions. (a) r j =

∣∣∣z j

∣∣∣; (b)
∆φ j = ϕ j − ϕ j+1; (c) tem-
poral evolution of β; (d)
goal function.

Figure 2: Same as in Fig. 1
for adaptive control of 2-
cluster state (m = 3).

From β̇ = −Γβ
∂
∂β

Q̇0 we derive an adaptive law:

β̇ = Γβ
2K
N2

N∑
k, j=1

sin(ϕk−ϕ j)
N∑

n=1

a jn

(
rn,τ

r j
cos(β + ϕn,τ − ϕ j) − cos β

)
.

(9)
Fig. 1 shows the results of a numerical simulation for an

Erdős-Rényi random network with N = 6 nodes and row
sum normalized to unity. Unless otherwise stated, we use
Γβ = 1. According to the numerical simulations decreas-
ing Γβ will yield a decrease of the speed of convergence.
On the other hand, if Γβ is too big, undesirable oscillations
appear. The model parameters are chosen as in Ref. [6]
(λ = 0.1, ω = 1, γ = 0, K = 0.08, τ = 0.52π, N = 6).
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Initial conditions for r j and ϕ j are chosen randomly from
[0, 4] and [0, 2π], respectively, β(0) = 0. The amplitudes
and phases approach appropriate values that lead to in-
phase synchronization. Note that the obtained value of β
does not converge to the one for which the analytical ap-
proach [6] has established stability of the in-phase oscil-
lation (blue dashed line), but to another limit value. This
can be explained as follows: There exists a whole interval
of acceptable values of β around the value of the coupling
phase for which an analytical treatment is possible, such
that for any value from this interval an in-phase state is sta-
ble. Our SG algorithm finds one of them, depending upon
initial conditions.

5. Cluster synchronization

In this section we will consider unidirectionally coupled
rings with N = 6 nodes. Let 1 ≤ m ≤ N − 1. Then
d = LCM(m,N)/m, where LCM denotes the least common
multiple, is the number of different clusters of a synchro-
nized solution. In order to extend the goal function Eq. (8)
such that we can stabilize d-cluster states, we define a gen-
eralized order parameter

Rd =
1
N

∣∣∣∣∣∣∣
N∑

k=1

ediϕk

∣∣∣∣∣∣∣ (10)

with d ∈ N. However, if we derive a goal function from
this order parameter in an analogous way as in Eq. (8), this
function will not have a unique minimum at the d-cluster
state because Rd = 1 holds also for the in-phase state and
for other p-cluster states where p are divisors of d. There-
fore, we adopt the following goal function:

Qd = 1 − fd(ϕ) +
N2

2

∑
p|d,1≤p<d

fp(ϕ), (11)

where p|d means that p is a factor of d. This goal func-
tion contains fd as the primary contribution for the d-cluster
state, but also a sum of penalty terms that counteract reach-
ing other cluster states in which fd is also unity. When-
ever one of those unwanted cluster states is approached,
the penalty term will lead to a gradient away from it. The
prefactor N2/2 is chosen for convenience to secure faster
convergence of the algorithm. From β̇ = −Γβ

∂
∂β

Q̇d one can
derive the adaptation law

β̇ = −ΓβK
N∑

j,k=1

 ∑
p|d,1≤p<d

p sin[p(ϕk − ϕ j)] −
2d
N2 sin[d(ϕk − ϕ j)]


×

N∑
n=1

a jn

[
rn,τ

r j
cos(β + ϕn,τ − ϕ j) − cos(β)

]
. (12)

Figs. 2 and 3 depict the results of numerical simulations
for two clusters (d = 2, m = 3, N = 6) and three clusters
(d = 3, m = 2 or 4), respectively. We note that the obtained

Figure 3: Same as in Fig. 1
for adaptive control of 3-
cluster state (m = 2, 4).
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Figure 4: Same as in Fig. 1
for the 3-cluster state in a
network with nonidentical
oscillators.

value of β comes close to the one (blue dashed line) for
which stability was shown analytically in Ref. [6].

All the results presented so far were for identical oscil-
lators in the network. It has been shown that control of
cluster and splay states using an appropriate value of the
phase β works even for slightly nonidentical frequencies ω
of the oscillators [6]. Fig. 4 shows the adaptive control of
a 3-cluster state similar to Fig. 3, but with nonidentical pa-
rameters λ j and ω j of the individual oscillators. We choose
them from a Gaussian distribution with mean value λ = 0.1
and ω = 1, respectively, and standard deviation 1% for
both. The oscillators do not synchronize completely due
to their amplitude and frequency mismatch, which can be
seen in Fig. 4(a,b).

6. Controlling several parameters simultaneously

The general form of the SG method as given in Eq. (5)
is also suitable for controlling more than one parameter. In
this section, this is demonstrated by controlling β, K, and
τ simultaneously. The vector u in Eq. (5) is then given
by u = (β,K, τ). We choose Γ as a diagonal matrix with
the diagonal elements Γ11 ≡ Γβ, Γ22 ≡ ΓK and Γ33 ≡ Γτ.
Using the goal function Qd of Eq. (11) we obtain for β the
adaptive algorithm given by Eq. (12). For K̇ = −ΓK

∂
∂K Q̇d

we obtain:

K̇ = −ΓK

N∑
j,k=1

 ∑
p|d,1≤p<d

p sin[p(ϕk − ϕ j)] −
2d
N2 sin[d(ϕk − ϕ j)]


×

N∑
n=1

a jn

[
rn,τ

r j
sin(β + ϕn,τ − ϕ j) − sin(β)

]
. (13)
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Figure 5: Same as in Fig. 1 for adaptive control of 3-cluster
state in a network of 6 nodes by simultaneously tuning K,
β and τ according to Eqs. (12), (14), and (13), respectively.
Γβ = ΓK = 10, Γτ = 0.05.

and for τ̇ = −Γτ
∂
∂τ

Q̇d

τ̇ = −Γτ

N∑
j,k=1

 ∑
p|d,1≤p<d

p sin[p(ϕk − ϕ j)] −
2d
N2 sin[d(ϕk − ϕ j)]


×

N∑
n=1

a jn

[
−

ṙn,τ

r j
sin(β + ϕn,τ − ϕ j) − ϕ̇n,τ

rn,τ

r j
cos(β + ϕn,τ − ϕ j)

]
. (14)

Figure 5 shows the successful control of a 3-cluster state
in a network consisting of 6 nodes where appropriate values
of β, K, and τ are found adaptively.

7. Conclusion

We have shown that by combining time-delayed cou-
pling with the speed gradient method of control theory one
can adaptively control synchronization in oscillator net-
works, Choosing an appropriate goal function, a desired
state of generalized synchrony can be selected by the self-
adaptive automatic adjustment of a control parameter. This
goal function, which is based on a generalization of the
Kuramoto order parameter, vanishes for the desired state,
e.g., in-phase or various cluster states. By numerical sim-
ulations we have shown that those different states can be
stabilized, and the control parameter (coupling phase) con-
verges to an appropriate value. We have established the
robustness of the control scheme by investigating slightly
nonidentical oscillators. We have also applied our method
simultaneously to the coupling phase, coupling amplitude,
and the time delay. In this way control of cluster syn-
chronization is possible without any a priori knowledge of
the coupling parameters. Given the paradigmatic nature of
the Stuart-Landau oscillator as a generic model, we expect
broad applicability, for instance to synchronization of net-
works in medicine, chemistry or mechanical engineering.

The mean-field nature of our goal function makes our ap-
proach accessible even for very large networks indepen-
dently of the particular topology.
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Rev. E 81, 025205(R) (2010).

[7] B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E.
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