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Abstract—In the brain, synchronization is a prominent
phenomenon associated with several cognitive capacities
as well as pathological states like Parkinson’s disease or
epilepsy. We study the stability of synchronization in
delay-coupled neural networks with a master stability ap-
proach. In the case of identical nodes and a single de-
lay time, zero-lag synchronization is always, i.e., indepen-
dently of the particular delay time and coupling strength,
stable in excitatory networks. Inhibition can introduce a
phase transition to desynchronization, e.g., in small-world
or random networks. We then extend the master stability
approach to more complex synchronization patterns where
the nodes are synchronized in groups with phase lags be-
tween these groups. The local dynamics of each group can
differ. For example, this approach allows us to use dif-
ferent neuronal models, e.g., for excitatory and inhibitory
neurons. Furthermore, time delays and coupling strengths
between the different clusters can be chosen nonuniformly
allowing for complex dynamics, like bursting patterns,
within the synchronization manifold even in the case of
identical nodes. We discuss the stability of such patterns.
In the case of identical nodes, delay times and coupling
strengths, for appropriate topologies we obtain multistabil-
ity between several cluster states.

1. Introduction

Synchronization in the brain can be related to cognitive
capacities [1] as well as to pathological conditions, e.g.,
epilepsy [2]. Therefore, there has been tremendous in-
terest in the study of synchronization in neural networks
[3, 4, 5, 6]. The master stability approach has been applied
to the study of synchronization patterns independently of
a specific network topology [7, 8, 9]. The brain is or-
ganized in different brain areas leading to different delay
times between neurons of distant areas and neurons within
the same area. Furthermore, various types of neurons exist,
corresponding to different local dynamics. Therefore we
propose that the master stability function for zero-lag and
group synchronization [9, 10, 11] will be especially useful
for investigating complex neural synchronization phenom-
ena.

The characterization of stability of isochronous synchro-
nization has been widely studied, and the ground-breaking
work by Pecora and Carroll [12] which allows for a separa-
tion of network topology and local dynamics of the nodes
was recently also applied to networks with delays in the

links [13, 14, 15, 16, 17]. Such delay times can greatly
change the synchronization properties and appear in many
natural coupled systems. In neuronal networks delays play
a role due to finite distances between interacting neurons,
but also due to processing lags in the neurons.

For group and cluster synchronization, attempts have
been made to treat stability within a master stability ap-
proach. Sorrentino and Ott [10] considered two groups of
nodes governed by different local dynamics. Dahms et al.
[11] have shown how this can be generalized to a higher
number of groups and introduced multiple coupling matri-
ces to lift the restriction of multipartite topologies. This
makes the theory accessible for a wide range of topologies.

We shortly review zero-lag synchronization in neural
networks in Sec. 2. After introducing the notion of cluster
and group dynamics in Sec. 3, we show how stability can
be analyzed using the master stability function in Sec. 4.
Finally, the effect of different topologies, coupling types,
and delay times is shown for neuronal networks in Sec. 5.

2. Zero-lag synchronization

In Ref. [9], zero-lag synchronization was studied us-
ing the master stability approach in a network of identical
nodes with a single delay time and coupling strength. It
was shown that in excitatory networks, zero-lag synchro-
nization is stable independently of the delay time, the over-
all coupling strength, the network size, and the particular
topology. The term excitatory networks refers to networks
where the coupling between each pair of nodes has a pos-
itive sign, and thus all entries of the coupling matrix are
positive. Introducing long range inhibitory links, i.e., cou-
pling with a negative sign, in rings with excitatory cou-
pling, yields a sharp transition to desynchronization as the
number of links exceeds a critical value. In comparison to
these small-world-like networks, random networks of exci-
tatory links are much less susceptible to desynchronization
via inhibition.

3. Cluster and group dynamics

In a network consisting of N identical nodes, we refer
to group synchronization as a state where groups of nodes
exist that show isochronous synchronization internally, but
synchronization between these group does not occur, or is
of non-isochronous type, i.e., there may be a phase lag be-
tween groups [18, 19]. Cluster synchronization describes
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the special case that all nodes in the network–and not only
the nodes within one group–are identical.

Assume the number of groups to be M, where k =

1, . . . ,M numbers the individual groups. The dynamical
variables of the nodes in each group are then given by
x(k)

i ∈ R
dk with i = 1, . . . ,Nk, where Nk denotes the num-

ber of nodes in the k-th group. The dimension dk of the
x(k)

i is given by the particular node model, e.g., the two-
dimensional FitzHugh-Nagumo model [9].

In general the dimension dk of the nodes x(k)
i may be dif-

ferent for each group k. Consequently, also the local dy-
namics F(k)(x(k)

i ) can be different for each group, but must
be identical for all nodes i = 1, . . . ,Nk in a given group
k. For example, consider a network of neurons, where one
group contains inhibitory neurons and another group con-
tains excitatory ones. The local dynamics will be different
for each group, and depending on the model used to de-
scribe both types of neurons also the dimension of the node
dynamics may be different.

Let σ(k)
A be the coupling strength for the coupling from

the (k − 1)-th to the k-th group. In the same sense, let A(k)

be an Nk−1 × Nk coupling matrix, such that its entries {A(k)
i j }

represent the coupling of node j (which is in the (k − 1)-th
group) to node i (which is in the k-th group). By this con-
struction we obtain a multipartite topology in which one
cluster has incoming links from only one neighbor while
having outgoing links to another one. In order to be able
to deal with more complex topologies beyond multipartite
structures like, for instance, lattices [20, 21] or hierarchical
networks, we introduce a second set of coupling matrices.
The Nnk × Nk coupling matrix B(k) describes the coupling
from the nk-th to the k-th group. That is, the k-th group now
receives input from two groups, k − 1 and nk. The coupling
strength associated with B(k) is σ(k)

B . Without loss of gen-
erality we assume the row sums of the coupling matrices
A(k) and B(k) to be unity, which corresponds to the condi-
tion of unity or constant row sum needed in the special case
of complete isochronous synchronization [12].

As coupling schemes H(k) we introduce dk−1 × dk matri-
ces, given that dk−1 and dk are the dimensions of x(k−1)

i and
x(k)

i , i.e., the dimensions of the local dynamics in the (k−1)-
th and k-th group, respectively. Note that, as a generaliza-
tion, nonlinear coupling functions H(k) : Rdk−1 → Rdk may
also be used instead of matrices [12, 10].

Finally, we allow the coupling delays τ(k)
A and τ(k)

B to be
different. A schematic diagram of the variables and matri-
ces is shown in Fig. 1(a) for two groups. Here, A(1) and A(2)

denote the coupling between groups, depicted by dashed
arrows, and B(1) and B(2) represent the coupling within the
groups, depicted by solid arrows. Nodes of one group are
depicted in the same gray scale (color).

The dynamics of any single node in the network can then
be described by the differential equation

ẋ(k)
i = F(k)[x(k)

i (t)]

x(2)sx(1)s

x(2)1x(1)2

x(2)2 x(1)1

(a)

σ
(1)
A

τ(1)

H(1)

σ
(2)
A

H(2)

σ
(2)
B , τ(2), H(2)σ

(1)
B , τ(1), H(1)

τ(2)

A(1)

A(2)

intergroup coupling

B(2)
B(1)

intragroup coupling

(b)

Figure 1: (Color online) (a) Schematic diagram of two
groups visualizing parameters and dynamical variables as
in Eq. (1). (b) The corresponding synchronization manifold
according to Eq. (2).

+σ(k)
A

Nk−1∑
j=1

A(k)
i j H(k)[x(k−1)

j (t − τ(k)
A ) − x(k)

i (t)]

+σ(k)
B

Nnk∑
j=1

B(k)
i j H(k)[x(nk)

j (t − τ(k)
B ) − x(k)

i (t)], (1)

for i, j = 1, . . . ,Nk, k = 1, . . . ,M, where we used a diffu-
sive like coupling. The group synchronization manifold is
then given by

ẋ(k)
s = F(k)[x(k)

s (t)] +σ(k)
A H(k)[x(k−1)

s (t − τ(k)
A ) − x(k)

s (t)]

+σ(k)
B H(k)[x(nk)

s (t − τ(k)
B ) − x(k)

s (t)], (2)

which follows by inserting x(k)
i = x(k)

j ≡ x(k)
s into Eq. (1)

(∀i, j = 1, . . . ,Nk, ∀k = 1, . . . ,M). For the example of two
groups, Fig. 1(b) illustrates the synchronization manifold.
Note that each group k may exhibit different synchronous
dynamics. Even if the functions F(k), the coupling matri-
ces H(k), and the delay times τ(k)

A and τ(k)
B are identical for

each group, different initial conditions can lead to different
dynamics. A generalization with more than two coupling
terms is beyond the scope of this paper.

4. Stability of group synchronization

In order to investigate the stability of the synchronous
state, we linearize Eq. (1) around the group synchronization
manifold x(k)

s (k = 1, . . . ,M):

δẋ(k)
i = DF(k)(x(k)

s )δx(k)
i

+σ(k)
A

Nk−1∑
j=1

A(k)
i j H(k)[δx(k−1)

j (t − τ(k)
A ) − δx(k)

i (t)]
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+σ(k)
B

Nnk∑
j=1

B(k)
i j H(k)[δx(nk)

j (t − τ(k)
B ) − δx(k)

i (t)] (3)

We can introduce block coupling matrices QA and QB in-
cluding all inter-group coupling matrices. Let QA be the
matrix containing the blocks A(kn) at positions (k, k − 1),
i.e.,

Q =



0 · · · · · · 0 A(1)

A(2) 0 · · · · · · 0
0 A(3) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M) 0


, (4)

and QB the matrix containing the blocks B(k) at positions
(k, nk). If QA and QB commute, i.e., [QA,QB] = 0, it is
possible to obtain a master stability equation

δ ˙̄x(k)
= DF(k)(x(k)

s )δx̄(k)(t)

+σ(k)
A γ(1)H(k)[δx̄(k−1)(t − τ(k)

A ) − δx̄(k)(t)]

+σ(k)
B γ

(2)H(k)[δx̄(nk)(t − τ(k)
B ) − δx̄(k)(t)], (5)

for k = 1, . . . ,M, where γ(1) and γ(2) are chosen from the
eigenvalue spectrum of the matrices matrices QA and QB,
respectively. These eigenvalues have to be evaluated in
pairs corresponding to one eigenvector. Since QA and QB

commute they always have a set of identical eigenvectors.
The largest Lyapunov exponent Λ calculated from

Eq. (5) as a function of the complex parameters γ(1) and
γ(2) is called the master stability function [12, 10, 11].

5. Group synchronization in neural networks

Here we apply our method to a neural network where
the nodes are modeled as FitzHugh-Nagumo (FHN) sys-
tems. We consider a network of two groups coupled via
two coupling matrices QA (intergroup coupling) and QB

(intragroup coupling). The local dynamics of the i-th node
in the k-th cluster is given as follows:

F(x(k)
i ) =

 1
ε
(u(k)

i −
1
3 u(k)

i
3
− v(k)

i )
u(k)

i + a

 (6)

with x(k)
i = (u(k)

i , v(k)
i ) and k = 1, 2. Here u and v denote the

activator and inhibitor variables, respectively. The parame-
ter a determines the threshold of excitability. A single FHN
oscillator is excitable for a > 1 and exhibits self-sustained
periodic firing beyond the Hopf bifurcation at a = 1. We
will focus on the excitable regime with a = 1.3. The time-
scale parameter ε is chosen as ε = 0.01. We assume the

coupling scheme H(1) = H(2) ≡ H =

(
1/ε 0
0 0

)
.

The dynamics within the synchronization manifold is
equivalent to a system of two coupled nodes with self-
feedback; cf. Fig. 1(b). In Ref. [22] it was shown that
depending on the delay times, the coupling strength, and

the strength of the self-feedback different dynamical sce-
narios, i.e., in-phase synchronization, anti-phase synchro-
nization, or bursting can arise. Figure 2 shows the mas-
ter stability function in panels (a)-(c) for in-phase synchro-
nization, anti-phase synchronization and for synchroniza-
tion in two bursting groups, respectively. The right hand
panels of Fig. 2 depict the corresponding time series: In
panel (d), (f), and (h) for the activator and in panel (e), (g),
and (i) for the inhibitor for in-phase, anti-phase, and burst-
ing dynamics, respectively. Because the different dynam-
ical scenarios yield distinctively different stable regions,
topologies might arise which show stable synchronization
for one of the patterns but not for the others. However,
for all scenarios the stable region contains the unity square,
i.e., (γ(1), γ(2)) ∈ [−1, 1]× [−1, 1]. With Gershgorin’s circle
theorem [23] it can easily be shown that the eigenvalues of
symmetrical matrices with positive entries and unity row
sum are always contained in the interval [−1, 1]. Thus, if
QA and QB have only positive entries, i.e., if the coupling is
excitatory, synchronization is stable for the dynamics and
parameters shown here. As a consequence, only the in-
troduction of inhibitory links can lead to desynchroniza-
tion as discussed in Sec. 2 above for the case of zero-lag
synchronization. A detailed study of these phenomena for
the eight-dimensional parameter space of σ(k)

A , σ(k)
B , τ

(k)
A , τ(k)

B
(k = 1, 2) is beyond the scope of this paper.

As an example of a network with inhibitory links which
will exhibit stable synchronization in only one of the pat-
terns discussed above, but not in the other ones, we choose

QA =

(
0 A
A 0

)
, QB =

(
B 0
0 B

)
, (7)

where A = ai j with ai j = 1 ∀i, j = 1, . . . ,N is an all-
to-all coupling matrix with self-coupling. The choice of
QB corresponds to n1 = 1 and n2 = 2; cf. Sec. 3. B is
an undirected random matrix with both excitatory (positive
entries) and inhibitory links (negative entries). The matrix
B describes a network with a fixed node degree with 12
excitatory and 9 inhibitory links for each node. The num-
ber of nodes is chosen as N = 100. The black dots in
Fig. 2 denote the corresponding eigenvalue pairs. In panels
(a) and (b) some eigenvalues are located outside the stable
region, while in panel (c) they are all inside, which means
that the zero-lag and anti-phase synchronized solutions will
be unstable in such a network, while synchronization in the
bursting state will be stable.

6. Conclusion

Based on a master stability approach, we have stud-
ied patterns of cluster and group synchronization in delay-
coupled networks and determined their stability. Using
multiple commuting coupling matrices, we have general-
ized the stability analysis beyond multipartite topologies,
for instance towards lattices or hierarchical network struc-
tures. As a concrete example we have focused on a neu-
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Figure 2: (Color online) (a)-(c): Master stability function
for networks of FitzHugh-Nagumo oscillators governed by
Eq. (6). The black dots denote the location of the eigen-
value pairs for the example topology (7). (d)-(i): Time
series of the dynamics in the first (dark dashed red) and
second (light solid blue) group. Parameters: (a),(d),(e):
in-phase synchronization (τ(k)

B = 3), (b),(f),(g): anti-phase
synchronization (τ(k)

B = 2), (c),(h),(i): synchronized burst-
ing (τ(k)

B = 3.2). Other Parameters: σ(k)
A = σ(k)

B = 0.5, τ(k)
A =

3, ε = 0.01, a = 1.3 (groups k = 1, 2).

ral networks and the interplay of different delay times and
topology, which is a step towards understanding complex
patterns of synchronization in real-world networks.
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Fradkov, and E. Schöll, Phys. Rev. E 85, 016201
(2012).

[20] J. Kestler, W. Kinzel, and I. Kanter, Phys. Rev. E 76,
035202 (2007).

[21] J. Kestler, E. Kopelowitz, I. Kanter, and W. Kinzel,
Phys. Rev. E 77, 046209 (2008).
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