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Abstract—Anticipated synchronization (AS) was
shown to occur in systems of two coupled neurons in
a master-slave configuration, if the slave is subject to
a delayed self-feedback. We show that AS can also
occur in a canonical neuronal microcircuit with standard
chemical synapses, in which the formal delayed negative
self-feedback is replaced by an inhibitory feedback loop.
This means that the delayed feedback that leads to AS is
given by biologically plausible elements (an interneuron
and chemical synapses). So the anticipation time is
not hard-wired in the dynamical equations, but rather
emerges from the circuit dynamics. In this scenario, the
inhibitory synaptic conductance has an important role in
the transition from delayed synchronization (DS) to AS.

1. Introduction

Synchronization of nonlinear systems has been exten-
sively studied on a large variety of physical and biological
systems. About a decade ago, Voss [1] discovered a new
scheme of synchronization that he called “anticipated syn-
chronization”. He found that two identical dynamical sys-
tems coupled in a master-slave configuration can exhibit
this anticipated synchronization if the slave is subjectedto
a delayed self-feedback. One of the prototypical examples
proposed by Voss [1] is described by the equations

ẋ = f (x(t)), (1)

ẏ = f (y(t)) + K[x(t) − y(t − td)].

f (x) is a function which defines the autonomous dynamical
system. The solutiony(t) = x(t + td), which characterizes
the anticipated synchronization (AS), has been shown to be
stable in a variety of scenarios, including theoretical stud-
ies of autonomous chaotic systems [1] and delayed-coupled
maps [2], as well as experimental observations in lasers [3]
and electronic circuits [4] .

More recently, AS was also shown to occur in a non-
autonomous dynamical system, with FitzHugh-Nagumo
models driven by white noise [5]. In these works, even
when the model neurons were tuned to the excitable
regime, the slave neuron was able to anticipate the spikes
of the master neuron, working as a predictor [4]. The main

difficulty in these models lies in requiring that the mem-
brane potentials of the involved neurons be diffusively cou-
pled. While a master-slave coupling of the membrane po-
tentials could in principle be conceived by means of elec-
trical synapses (via gap junctions) [6] or ephaptic interac-
tions [7], no biophysical mechanism has been proposed to
account for the delayed inhibitory self-coupling of the slave
membrane potential.

In the brain, the vast majority of neurons are coupled via
chemical synapses, which can be excitatory or inhibitory.
In both cases, the coupling is directional and highly non-
linear, typically requiring a suprathreshold activation (e.g.
a spike) of the pre-synaptic neuron to trigger the release
of neurotransmitters. These neurotransmitters then need to
diffuse through the synaptic cleft and bind to receptors in
the membrane of the post-synaptic neuron. Binding leads
to the opening of specific channels, allowing ionic currents
to change the post-synaptic membrane potential [6]. This
means that not only the membrane potentials are not di-
rectly coupled, but the synapses themselves are dynam-
ical systems. We propose to bridge this gap, investigat-
ing whether AS can occur in biophysically plausible model
neurons coupled via chemical synapses [8].

2. The Model

We start with the original master-slave circuit of eqs. 1
and an unidirectional excitatory chemical synapse (M−→S
in Fig. 1). The inhibitory feedback we propose is given
by an interneuron (I) driven by the slave neuron, which
projects back an inhibitory chemical synapse to the slave
neuron (see Fig. 1). So the time-delayed negative feedback
is accounted for by chemical inhibition which impinges on
the slave neuron some time after it has spiked, simply be-
cause synapses have characteristic time scales. Such in-
hibitory feedback loop is one of the most canonical neu-
ronal microcircuits found to play several important roles,
for instance, in the spinal cord [9], thalamus [10], cortex,
etc.

In the above network, each node is described by a
Hodgkin-Huxley model neuron [11], consisting of four
coupled ordinary differential equations associated to the
membrane potentialV and the ionic currents flowing across
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Figure 1: Three neurons coupled by chemical synapses in
the master-slave-interneuron (MSI) configuration : excita-
tory AMPA synapses (with maximal conductancegA) cou-
ple master (M) to slave (S) and slave to interneuron (I),
whereas an inhibitory GABAA synapse (with maximal con-
ductancegG) couples interneuron to slave.

the axonal membrane corresponding to the Na, K and leak-
age currents. The gating variables for sodium areh andm
and for the potassium isn. The equations read [12]:

Cm
dV
dt

= GNam3h(ENa − V) +GKn4(EK − V)

+Gm(Vrest − V) + I +
∑

Isyn (2)

dx
dt

= αx(V)(1− x) − βx(V)x , (3)

wherex ∈ {h,m, n}, and all parameters are in agreement
with Ref. [12].

According to Rinzel and Miller [14], in the absence of
synaptic currents the only attractor of the system of equa-
tions 2 and 3 forI . 177.13 pA is a stable fixed point,
which loses stability via a subcritical Hopf bifurcation at
I ≃ 276.51 pA. For 177.13 pA. I . 276.51 pA, the stable
fix point coexists with a stable limit cycle.

In our model the link between each node is a fast synapse
AMPA (A) or GABA A (G) (excitatory or inhibitory respec-
tively) [see Fig. 1]. Each synaptic current is given by

I(i)
= gir

(i)(V − Ei), (4)

whereV is the postsynaptic potential,gi the maximal con-
ductance and all parameters are following Destexhe et
al [13].

The fractionr(i) (i = A,G) of bound (i.e. open) synaptic
receptors is modelled by a first-order kinetic dynamics:

dr(i)

dt
= αi[T ](1 − r(i)) − βir

(i), (5)

whereαi andβi are rate constants that depend on a number
of different factors and vary significantly [15]. To exem-
plify some of our results, we initially fix some parameters.
Then we allow these parameters to vary within the phys-
iological range when exploring different synchronization
regimes.

3. The Results

We describe results for the scenario where all neurons
receive a constant currentI > 280 pA and the rate constants

are fixed (αA = 1.1 mM−1ms−1, βA = 0.19 ms−1, αG =

5.0 mM−1ms−1 and βG = 0.30 ms−1). This corresponds
to a situation in which the fixed points are unstable and,
when isolated, they spike periodically. For different sets
of inhibitory conductance valuesgG our system can exhibit
three different behaviors. To characterize them, we define
tM
i as the time the membrane potential of the master neuron
is at its maximal value in thei-th cycle (i.e. itsi-th spike
time), andtS

i as the spike time of the slave neuron which is
nearest totM

i .
The delayτi is defined as the difference (see Fig. 2):

τi ≡ tM
i − tS

i . (6)

Initial conditions were randomly chosen for each computed
time series. Whenτi converges to a constant valueτ, a
phase-locked regime is reached [16]. Ifτ < 0 (“master
neuron spikes first”) we say that the system exhibits de-
layed synchronization (DS) [Fig. 2(a)]. Ifτ > 0 (“slave
neuron spikes first”), we say that anticipated synchroniza-
tion (AS) occurs [Fig. 2(b)]. Ifτ does not converge to a
fixed value, the system is in a phase drift (PD) regime [16].
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Figure 2: Membrane potentialV as a function of time for
an external currentI = 280 pA in the master (M), slave
(S), and interneuron (I) neurons. The plot illustrates two
regimes: (a)gG = 20 nS leads to delayed synchronization
(DS), whereτ < 0 (blue), and (b)gG = 40 nS leads to
anticipated synchronization (AS), whereτ > 0 (red).

In Fig. 3 we display a three-dimensional projection of
the phase diagram of our model. We variedgA (gG) along
the horizontal (vertical) axis and compute the correspon-
dent time delayτ which is coded by the colors. We observe
that the three different regimes: DS (blue), AS (red) and PD
(white) are distributed in large continuous regions, having a
clear transition between them. Several features in these re-
sults are worth emphasizing. First note thatgG andgA (the
parameters varied in Fig. 3) do not change the time scales
of the synaptic dynamical variables (r), only the synaptic
strength.
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Secondly,τ varies smoothly withgG andgA. This con-
tinuity somehow allows us to interpretτ > 0 as a legit-
imately anticipated regime. The reasoning is as follows.
For gG = 0, we simply have a master-slave configuration
in which the two neurons spike periodically. Due to the ex-
citatory coupling, the slave’s spike is always closer to the
master’s spike which preceded it than to the master’s spike
which succeeded it [as in e.g. Fig. 2(a)]. Moreover, the
time difference is approximately 1.5 ms, which is compa-
rable to the characteristic times of the synapse. In that case,
despite the formal ambiguity implicit in the periodicity of
the time series, the dynamical regime is usually understood
as “delayed synchronization”. We interpret it in the follow-
ing sense: the system is phase-locked at a phase difference
with a well defined sign [16]. IncreasinggG, the time dif-
ference between the master’s and the slave’s spikes even-
tually changes sign [as in e.g. Fig. 2(b)]. Even though the
ambiguity in principle remains, there is no reason why we
should not call this regime “anticipated synchronization”
(again a phase-locked regime, but with a phase difference
of opposite sign). In fact, we have not found any parame-
ter change which would take the model from the situation
in Fig. 2(a) to that of Fig. 2(b) by graduallyincreasing the
lag of the slave spike until it approached the next master
spike. If that ever happened,τ would change discontinu-
ously (by its definition). Therefore, the term “anticipated
synchronization” by no means implies violation of causal-
ity and should just be interpreted with caution.

Third, it is interesting to note that the largest anticipa-
tion time can be longer (up to 3 ms, i.e. about 20% of
the interspike interval) than the largest time for the delayed
synchronization (≈ 1.5 ms). If one increasesgG further in
an attempt to obtain even larger values ofτ, however, the
system undergoes a bifurcation to a regime with phase drift
[which marks the begin of the white region in Fig. 3]. In the
DS and AS regimes the master and slave neurons spike at
the same frequency. However, when the system reaches the
PD regime the mean firing rate of the slave neuron becomes
higher than that of the master.

To get insights into more physiological conditions we
consider the three large-scale network shown in Fig. 4(a).
Each one is composed by hundreds of Izhikevich neu-
rons sparsely connected that receive an independent Pois-
son spike train (resulting from 100 excitatory neurons at
rate r = 24 Hz). With no coupling between the popula-
tions the master and the slave populations oscillate. In the
master-slave-interneuron configuration each neuron in the
slave population receives excitatory (inhibitory) synapses
from some neurons in the master (interneuron) population
and sends excitatory synapses to some neurons in the in-
terneuron population. Depending on the synaptic conduc-
tances of those synapses (speciallygMS andgIS shown in
Fig. 4(a)) the master and slave population synchronize. For
all parameters shown in Fig. 4(b) the two population have
same mean frequency and their mean membrane potential
are highly correlated. We can defineτi as in Eq 6, wheretM

i
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Figure 3: Color-coded delayτ (right bar) in the (gA, gG)
projection of parameter space: DS (blue), AS (red) and PD
(white, meaning that no stationary value ofτ was found).

(tS
i ) is the time the mean membrane potential of the master

(slave) population is at its maxim umvalue in thei-th cycle.
Due to the Poisson input the period of oscillation varies in
each cycle and alsoτi, so we defineτ as the mean of the
τi in many cycles. Similar to the 3-neuron motif,τ can be
positive (AS) or negative (DS), respectively the red and the
blue regions in Fig. 4(b).
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Figure 4: (a) Three large-scale networks coupled in a
master-slave-interneuron configuration. The master pop-
ulation is composed of 80% excitatory neurons and 20%
inhibitory ones. The slave (interneuron) population is com-
posed only by excitatory (inhibitory) neurons. (b) Color-
coded delayτ (right bar) in the (gIS , gMS ) projection of pa-
rameter space: DS (blue), AS (red).
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4. Concluding remarks

In summary, we have shown that a biologically plausible
model of a 3-neuron (MSI) motif can exhibit an attractor
in phase space where anticipated synchronization is stable.
The transition from the DS to the AS regime is a smooth
function of the synaptic conductances. Typically, a fur-
ther increase in the inhibitory conductancegG leads to a
second transition from AS to PD, a quasiperiodic regime
in which the slave firing frequency is larger than that of
the master. Naturally, our system can also exhibit sub-
harmonic responses if parameter space is sufficiently ex-
plored, most notablyp/q-subharmonic locking structured
in Arnold tongues.

We have also varied the synaptic decay rates (β andα),
as well as input currents (I) within well accepted physio-
logical ranges (data not shown). In all the scenarios there
is always a continuous region in parameter space where AS
is stable. Replacing the constant current by a global peri-
odic driver (arguably a more realistic situation), we obtain
a model of a 4-neuron motif [8] which exhibits the same
three regions of the simpler model (data not shown). More-
over, when replacing each neuron by a randon network DS
and AS regimes are also observed depending on the in-
hibitory synaptic conductace. Therefore the phenomenon
seems to be robust at microcircuit scale and also in large-
scale networks.

Our results offer a number of possibilities for further in-
vestigation. We are also investigating whether the structure
of the phase diagram can be qualitatively reproduced via
a phase-response curve analysis [18, 13] of the neuronal
motifs studied here. Since the DS-AS transition amounts
to a smooth inversion in the timing of the pre- and post-
synaptic spikes, our results could have a bearing on spike-
time-dependent plasticity models.
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