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Abstract—This paper studies an application of the diffe-
rential evolution algorithm to the maximum power point se-
arch in photovoltaic systems. Depending on the insolation,
the power characteristic varies and complicated multi-peak
may be generated. Applying a basic algorithm to a multi-
peak objective function of terminal voltage vector, we have
confirmed that the particles tend not to be trapped into lo-
cal optima and global search can be possible. If parameters
are selected suitably, our algorithm can find the maximum
power points.

1. Introduction

The differential evolution (DE, [1] [2]) is a population-
based optimization algorithm. In the DE algorithm, parti-
cles correspond to potential solutions. Following a diffe-
rence equation, the particle location is updated. The DE is
simple in concept and is easy to implement. The DE does
not require differentiability of the objective functions and
is applicable to various problems such as multi-peak pro-
blems. Engineering applications are many, including opti-
mal design of signal processing circuits [3] [4].

In this paper, we consider an application of DE to pho-
tovoltaic (PV) systems. In order to increase the power ef-
ficiency, it is important to find the maximum power point
(MPP) of PV arrays. It can contribute to design an efficient
maximum power point tracker (MPPT, [5]-[7]).

Depending on the insolation, the power characteristic
of the PV system varies and complicated multi-peak may
be generated. In such a situation, local maximum power
points (LPPs) may be generated and the LPPs make the
MPPT difficult. In this paper, we construct a multi-peak
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Figure 1: Equivalent circuit of a solar cell.
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Figure 2: The objective system.

objective function of two dimensional terminal voltage vec-
tors (one-dimensional case is studied in [7]). Applying a
rand type DE to this problem, we have confirmed that par-
ticles are scattered, tend not to be trapped into LPPs and
global search can be possible. If parameters are selected
suitably, the DE can find the MPP of multi-peak functions.

2. Objective Function

In this section, we introduce the objective function based
on the equivalent circuit of a solar cell as shown in Fig. 1
[8] [9]. The voltage versus current characteristics is descri-
bed by

I = Iph − Irs[exp(
qV

kT A
) − 1] (1)

where I is terminal current and V is terminal voltage. Iph

is photo-generated current, Irs is the cell reverse saturation
current, q is elementary charge, k is Boltzman constant, T
is absolute temperature and A is diode ideality factor. For
simplicity, series resistance Rs and shunt resistance Rsh are
ignored. As the objective system, we consider multiple so-
lar arrays system as shown in Fig. 2. It includes two sets of
three solar cells connected in series. Each set is controlled
by single centralized MPPT controller. The Vi versus Ii ,
i= 1 , 2 , characteristics is shown in Fig. 3. The objective
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function is the power generated by these solar arrays and
depends on V1 and V2:

P = F(V1,V2)

Figure 4 shows contour map of this function where
the maximum power point (MPP) is given at V1 =

1.23[V],V2 = 1.26[V], power=7.27 [W].

Figure 3: I-V characteristics of the objective function.

Figure 4: Contour map of the objective function.

3. Differential Evolution

In order to define the DE algorithm, we prepare N parti-
cles. Each particle is characterized by its position on the V1
versus V2 plane. The position xi ≡ (V1i,V2i) is a potential
solution. Since it is hard to set plural operating points, in
the practical system, we use successive N operating points
in time domain as the plural points in space domain virtu-
ally. Let Xt be the single particle (corresponding to single
operating point) at time t and let xn

i be the virtual i-th par-
ticle at iteration step n. Let X1 ≡ x1

1, X2 ≡ x1
2, · · · , and let

XN ≡ x1
N . In general, let the single particle at time Nt+ i be

equivalent to the i-th virtual particle at iteration step n:

XNt+i ≡ xn
i , i ∼ N

For convenience, we use the virtual particle xn
i in the de-

finition of the algorithm. The algorithm is defined by the
following 5 steps.

Step 1 (Initialization): Let iteration step n = 0. The parti-
cles xn

i , i = 1 ∼ N, are initialized randomly in the search
space S 0. Let X ≡ {xn

1, · · · , xn
N}.

Step 2 (Mutation): Three vectors xn
x1, xn

x2 and xn
x3 selected

randomly from the set of particles X where xn
x1 � xn

x2 � xn
x3.

A candidate vector yn
i is made by

yn
i = xn

x1 + B(xn
x2 − xn

x3) (2)

where B is the scaling parameter.

Step 3 (Crossover): Applying the crossover with proba-
bility Pc to the candidate vector yn

i and the parent xn
i , we

obtain an offspring cn
i where i = 1 ∼ N.

Step 4 (Survival): The parent xn
i is compared with the off-

spring cn
i and is updated as the following:

if ( f (xn
i ) < f (xnew

i )) then xn
i = xnew

i
if ( f (xn

i ) > f (xnew
i )) then xn

i = xn
i

(3)

Step 5 (Termination Condition): Let n = n + 1, go to Step
2 and repeat until the maximum time limit nmax.

4. Numerical Experiment

In order to confirm the algorithm efficiency, we have per-
formed basic numerical experiments for objective function
as shown in Fig. 4. We have fixed the parameters: scaling
parameter B = 0.7, crossover probability Pc = 0.5, number
of particles N ∈ {5, 10, 20, 30, 50} and maximum time limit
nmax = 100. If the Gbest (the best value of the all particles)
reach exceeds 7.25 [W] (99.7 % of MPP), we declare that
the exploring is successful.

Figures 5 and 6 show exploring process in successful and
unsuccessful runs, respectively. In the DE particles can be
scattered and global search is possible. The particles tend
not to be trapped into LPPs. Figure 7 shows Gbest for the
number of particles N= 5, 10, 30 and 50.The result are sum-
marized in Table. 1: the success rate SR and number of
iterations #ITE are given in average after 1000 trials. As
N increases inter-particle communication frequency incre-
ases and the search speed becomes faster. In Fig. 8, we
have confirmed power sequence of single particle Xt corre-
sponding to plural particles in Fig. 5. The power sequence
is inconstant and the efficiency cannot be high.
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Figure 5: Exploring process in successful run.

Table 1: Success rate and iteration number.

#PCL SR [%] #ITE
5 82.0 16.4

10 99.3 13.3
20 100 10.8
30 100 9.41
50 100 7.84

5. Conclusions

An application of DE to MPP search is studied in this
paper. Performing basic numerical experiment, we have
confirmed that the particles can be scattered. They tend
not to be trapped into LPPs and global search can be pos-
sible. If the number of particle is suitable, we can find the
MPP successfully. Future problems include consideration
of an efficient MPPT method and comparison with other
population-based optimization algorithms.

Figure 6: Exploring process in unsuccessful run.

Figure 7: Characteristics of Gbest.
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Figure 8: Power sequence of single particle Xt.
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