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Abstract—An analytical approach is developed to mod-
ulate either the frequency or the amplitude of an oscillator.
We present the strategy in general two-dimensional discrete
polynomial systems undergoing the Neimark-Sacker bifur-
cation imposed by designed linear feedback controls, and
apply the method to a model of an ideal storage system and
the Chialvo neuronal model. Our method shows potential
to understand the mechanism of frequency and amplitude
modulations in various biological systems.

1. Introduction

Oscillations are omnipresent in real world and particu-
larly in biological systems: from signalling pathways such
as NFκB oscillations, to rhythmic clocks both in animals
and plants, and to hibernation [1, 2]. In the cell cyclic os-
cillation model, the period of the cell cycle ranges from
about 10 minutes in rapidly dividing embryos to tens of
hours in dividing somatic cells, while the variation in the
amplitude of the oscillation seems neither necessary nor
desirable [3]: a typical example of frequency modulation
(FM) [4]. In the hippocampus or the inferior-temporal cor-
tex in the brain, the amplitude of the theta wave (4-8Hz)
increases after learning, without affecting the frequency:
a typical example of amplitude modulation (AM) [5, 6].
There is accumulated evidence that biological systems (e.g.
gene regulation, neuronal networks etc) use either FM or
AM to encode and decode information. Therefore, an in-
teresting question is how FM or AM can be achieved for
an oscillator. This issue has attracted a lot of interests and
has recently been discussed in the literature for many bio-
logical oscillator models [7], yet all based upon numerical
simulations and for FM exclusively.

Here we present a theoretical approach to tackle this
question. Specifically, we consider a general two-
dimensional discrete polynomial system undergoing the
well-known Neimark-Sacker bifurcation with the change
of a bifurcation parameter. By comparing the normal forms
of this system with and without a linear feedback control,
analytical forms of the feedback for FM and AM can be ob-
tained. This approach allows for explicitly modulating the
the oscillator and creates the possibility to study the config-
urations in the feedback gain matrix for FM and AM. For
example, we might be able to understand from a theoretical
perspective why both negative and positive feedback loops
play essential roles in modulating oscillators, as reported in

the literature [7].

2. Methods

Consider a general two-dimensional discrete polynomial
model: [

x1
x2

]
7→

[
G1(x1, x2; γ)
G2(x1, x2; γ)

]
+ O(‖x‖4), (1)

where Gi(x1, x2; γ) =
∑

k+l63; k,l>0 gi
kl(γ)xk

1xl
2, i = 1, 2, are

polynomials with degrees no higher than 3, γ is a scalar pa-
rameter. Suppose the system has a unique fixed point. Then
without loss of generality the fixed point can be set at the
origin by a simple parameter-dependent coordinate shift.
This is assumed in the following, from which the constant
terms in Gi(x1, x2; γ), i = 1, 2 vanish. We further assume
that the fixed point of the system undergoes the supercrit-
ical Neimark-Sacker bifurcation at some parameter value
γ = γ∗, and the system (1) exhibits oscillating behaviors.
Adding linear feedback loops to the system (1)[

x1 → x1 x2 → x1
x1 → x1 x2 → x2

]
=

[
c d
e f

] [
x1
x2

]
, (2)

where xi → x j denotes the feedback from xi to x j, i, j =

1, 2; c, d, e and f are feedback feedback gains, the original
system can be reorganized as follows:

x 7→ A(γ)x + G(x, γ) + O(‖x‖4), (3)

where

A(γ) =

[
g1

10 + c g1
01 + d

g2
10 + e g2

01 + f

]
, (4)

and G(x, γ) summaries all the quadratic and cubic terms.
We then intend to design the combinations of the feedback
gains c, d, e and f such that the amplitude (or frequency) of
the linear controlled system (3) remains unchanged while
the frequency (or amplitude) changes as feedback gains
vary, which corresponds to FM (or AM).

The first step towards this is to ensure that the con-
trolled system also undergoes the Neimark-Sacker bifur-
cation at γ = γ∗, and therefore exhibits oscillating be-
haviors. This requires the existence of a pair of complex
eigenvalues µ1,2(γ) = r(γ)e±iφ(γ) for the Jacobian matrix
A(γ) and the multipliers are on the unit circle at the bifur-
cation point γ = γ∗. This is equivalent to ∆(γ∗) < 0 and
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r2(γ∗) = det
[
A(γ∗)

]
= 1, where ∆(γ) is the discriminant for

the polynomial det
[
λI − A(γ)

]
. Once this is satisfied, sys-

tems with and without linear feedback control can be trans-
formed into normal forms when the parameter γ is close to
the bifurcation point γ∗ via an invertible coordinate and pa-
rameter change. In the complex domain, the normal form
reads

w 7→ µw + λw2w̄ + O(|w|4), (5)

where w is a complex variable, µ = µ(γ) = r(γ)eiφ(γ), λ
is a function of the bifurcation parameter γ and depends
on the feedback gains. By further imposing conditions on
χ(γ) = Re

[
e−iφ(γ)λ(γ)

]
, the system (3) undergoes a super-

critical Neimark-Sacker bifurcation at γ = γ∗. A stable
closed invariant curve bifurcates from the fixed point when
γ passes through γ∗. Indeed, the amplitude and frequency
of the oscillator can be explicitly computed. The radius
of the invariant curve is represented by a function of γ, de-
noted by, r̂(γ), and the rotation angle is approximately φ(γ).

Having obtained the normal forms, it is then straightfor-
ward to design the linear feedback control to achieve FM or
AM. Specifically, for FM, it is required that the amplitude
of the stable closed invariant curve bifurcates from the fixed
point remains unchanged with and without linear feedback
control, which leads to

r̂(γ) = r̂(γ)
∣∣∣
c=d=e= f =0. (6)

By altering the feedback weights c, d, e and f under this
condition, the amplitude of the oscillator will remain ap-
proximately unchanged while the frequency can be modu-
lated. Similarly, for FM, it is required that

φ(γ) = φ(γ)
∣∣∣
c=d=e= f =0. (7)

which can be simplified to

g1
10 + g2

01 + c + f
r(γ)

=
g1

10 + g2
01√

g1
10g2

01 − g2
10g1

01

. (8)

By altering the feedback weights c, d, e and f under this
condition, the frequency of the oscilltor will remain ap-
proximately unchanged while the amplitude can be mod-
ulated.

3. Examples

To validate the practical usefulness of our theoretical
findings for two-dimensional discrete dynamical systems,
we apply our method to two representative models of phys-
ical and biological significance.

3.1. Example 1 - An ideal storage system

The first example is a rather simple system in which
some substance is being stored, released, and replenished

simultaneously in some interdependent way [8]. The dy-
namics of the system is described by a two-dimensional
map-based discrete-time model which takes the form[

u1
u2

]
7→

[
u1 − u1u2 + γ

f (u1u2)

]
, (9)

where γ is a positive constant and f is a monotonically in-
creasing function defined on R+ := [0,+∞], whose range
is contained in the interval (0, 1). It follows from the
equations that the system has a unique fixed point E(γ) =[
γ/ f (γ), f (γ)

]T
. By a simple parameter-dependent coordi-

nate shift x = u − E(γ), the fixed point can be set at the
origin. According to [8], if the map f is two times differ-
entiable, γ f ′(γ) = f (γ) holds for γ = γ∗, and that γ∗ is
not an inflexion point of f , i.e., f ′′(γ∗) , 0 stands, then,
as γ passes through γ∗, the origin of the model changes
its stability and a unique closed invariant curve bifurcates
from the fixed point. Therefore, we can add linear feed-
back to the system and apply the theory established above
to modulate the frequency and amplitude of the oscillator.
The feedback considered here takes a particular form by
setting c = f . To visualize the results, we specify f (γ) as a
sigmoidal function of the form proposed in [8]:

fκ,µ(γ) =
1

1 + e−κ(γ−µ) , (10)

with κ = 5 and µ = 0.5. These settings ensure the oc-
currence of the Neimark-Sacker bifurcation in the orig-
inal system. The controlled system was simulated with
γ = γ∗ + 10−4. When the linear feedback control vanishes,
i.e., c = d = e = 0, the system coincides with the original
system and has an amplitude of approximately 0.0220 and
the rotation angle of the invariant curve is 0.486.

For AM, the feasible values of c, d and e were searched
in the interval [−1, 1] with a step length 10−3. Fig. 1 shows
the numerical results of AM. In both panels, the blue lines
correspond to the first component of the original system. It
can been seen that the numerical results fit the theory quite
well and more crucially, with appropriate linear feedback
controls, the amplitude of the original system can either
increase (red line in the left panel) or decrease (green line
in the right panel).

For FM, optimal values of c, d and e were also numer-
ically searched in the interval [−1, 1] with a step length
10−3. Fig. 2 shows the numerical results of FM. In both
panels, the blue lines correspond to the first component of
the original system. It can been seen that with appropri-
ate linear feedback controls, the frequency of the original
system can either increase (red line in the left panel) or de-
crease (green line in the right panel).

3.2. Example 2 - The Chialvo neuronal model

For the second example, consider the Chialvo model [9]
described by the following system:[

u1
u2

]
7→

[
u2

1eu2−u1 + σ
αu2 − γu1 + β

]
, (11)
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Figure 1: Amplitude modulation of the storage model. The
parameters are selected as κ = 5, µ = 0.5, c = f and γ = γ∗+10−4.
In both panels, the blue lines correspond to the first component
of the original system with a theoretical amplitude approximately
0.0220. (Left panel) The amplitude increases with linear feedback
c = f = 0.0010, d = −0.9790, e = −0.0960 (red line). (Right
panel) The amplitude decreases with linear feedback c = f =

0, d = 0.2270, e = 0.0520 (green line).
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Figure 2: Frequency modulation of the storage model. The
parameters are selected as κ = 5, µ = 0.5, c = f and γ = 10−4.
In both panels, the blue lines correspond to the first component
of the original system with a theoretical amplitude approximately
0.0220. (Left panel) The frequency increases with linear feedback
c = f = −0.0940, d = 0.0750, e = 0.1650 (red line). (Right
panel) The frequency decreases with linear feedback c = f =

0.1090, d = 0.8440, e = −0.1090 (green line).

where u1 and u2 represent, respectively, the activation and
the recovery variables. The model includes four parame-
ters σ, α, β and γ. In the activation variable, the parame-
ter σ acts as a constant bias. The dynamics of the recov-
ery variable is determined by three positive parameters: the
time constant of recovery α < 1; the activation-dependence
of the recovery process γ < 1; and the offset β [9]. The
Chialvo neuron is intended as a model of excitable dynam-
ics and could display a wide array of dynamical features,
including subthreshold oscillations, bistability and chaotic
orbits.

Given the above parameter settings along with β � 1,
the system has a unique fixed point E(γ), whose coordinate,
[u∗1(γ), u∗2(γ)], satisfies the following equations:{

u∗1 = u∗21 eu∗2−u∗1 + σ,
u∗2 = αu∗2 − γu∗1 + β.

(12)

After a parameter-dependent coordinate shift x = u−E(γ),
the fixed point can be set at the origin. Thus the above
system (11) can be transformed into[

x1
x2

]
7→

[
(x1 + u∗1)2ex2−x1+u∗2−u∗1 + σ − u∗1
αx2 − γx1 + (α − 1)u∗2 − γu∗1 + β

]
. (13)

It can be verified that when α is close to 1, the model (13)
undergoes the Neimark-Sacker bifurcation at γ∗, where γ∗

satisfies the following equation:

αu∗1(2 − u∗1)eu∗2−u∗1 + γ∗u∗21 eu∗2−u∗1 = 1. (14)
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Figure 3: Amplitude modulation of the Chialvo model. The
parameters are selected as γ = γ∗ − 10−4, α = 0.9, β = 0.28
and σ = 0.04. In both panels, the blue lines correspond to the
first component of the original system with a theoretical ampli-
tude approximately 0.0024. (Left panel) The amplitude increases
with linear feedback c = f = 0, d = 0.046, e = 0.479 (red
line). (Right panel) The amplitude decreases with linear feedback
c = f = 0, d = −0.033, e = −1.990 (green line).
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Figure 4: Frequency modulation of the Chialvo model. The
parameters are selected as γ = γ∗ − 10−4, α = 0.9, β = 0.28
and σ = 0.04. In both panels, the blue lines correspond to the
first component of the original system with a theoretical ampli-
tude approximately 0.0024. (Left panel) The frequency increases
with linear feedback c = f = −0.124, d = 0.378, e = 0.347 (red
line). (Right panel) The frequency decreases with linear feedback
c = f = 0.009, d = −0.015, e = 0.081 (green line).

We still specified c = f in the feedback gains in this ex-
ample. By intensive computation of the normal form, we
obtained the conditions for both FM and AM. Numerical
simulations were carried out to verify the theories estab-
lished above. According to [10], the system was simulated
with γ = γ∗ − 10−4, α = 0.9, β = 0.28 and σ = 0.04. When
the linear feedback control vanishes, i.e., c = d = e = 0, the
system coincides with the original system. The amplitude
and the rotation angle of the oscillator are approximately
0.0024 and 0.209 respectively under the above parameter
setting.

Fig. 3 shows the numerical results of AM. In both pan-
els, the blue lines correspond to the first component of the
original system. It can been seen that the numerical results
fit the theory quite well and more crucially, with appropri-
ate linear feedback controls, the amplitude of the original
system can either increase (red line in the left panel) or de-
crease (green line in the right panel).

Fig. 4 shows the numerical results of FM. In both pan-
els, the blue lines correspond to the first component of the
original system. It can been seen that with appropriate lin-
ear feedback controls, the frequency of the original system
can either increase (red line in the left panel) or decrease
(green line in the right panel).

The normal form theory is only valid when the bifurca-
tion parameter is sufficiently close to the critical point. This
might impede the applications of the proposed analytic ap-
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Figure 5: Amplitude modulation of the Chialvo model. (Left
panel) With the parameters selected as γ = γ∗−0.1, α = 0.91, β =

0.28 and σ = 0.04, the amplitude increases with linear feedback
c = f = 0, d = 0.046, e = 0.479 (red line). (Right panel) With
the parameters selected as γ = γ∗ − 0.1, α = 0.90, β = 0.28 and
σ = 0.04, the amplitude decreases with linear feedback c = f =

0, d = −0.033, e = −1.990 (green line).
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Figure 6: Frequency modulation of the Chialvo model. (Left
panel) With the parameters selected as γ = γ∗ − 0.15, α = 0.89,
β = 0.28 and σ = 0.04, the frequency increases with linear feed-
back c = f = −0.124, d = 0.378, e = 0.347 (red line). (Right
panel) With the parameters selected as γ = γ∗ − 0.1, α = 0.89,
β = 0.267 and σ = 0.04, the frequency decreases linear feedback
c = f = 0.009, d = −0.015, e = 0.081 (green line).

proach since real biological systems often display periodic
behaviors far from the fixed point. However, Fig. 5 and
6 show that the feedback controls designed near the bifur-
cation point are still very instructive when the bifurcation
parameter is far from the bifurcation point with which the
system displays a typical spiking dynamics.

4. Conclusion

In this paper, we have presented an analytical approach
to achieve both FM and AM in oscillators modelled by
two-dimensional discrete dynamical systems. By comput-
ing the normal form of the Neimark-Sacker bifurcation, the
amplitude and the frequency of the oscillator can be explic-
itly obtained and appropriate linear feedback control can be
designed. We anticipate that our approach may represent a
general principle to engineer biological oscillators, which
plays a central role in synthetic biology. Future works in-
clude a more careful investigation of the configurations in
the feedback gain matrix with biological interpretations.
The idea in the present paper can also be extended to en-
gineering oscillators in systems with nonlinear feedbacks,
feedback loops or time delays.
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