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Abstract—We analyze a dataset of photovoltaic outputs
measured at 61 points within Japan. First, we apply the
method of Non-Negative Matrix Factorization, and obtain
a sparse non-negative decomposition of the dataset. Sec-
ond, we examine interactions among components of the
decomposition. We find that photovoltaic outputs represent
complex interactions of the atmosphere.

1. Introduction

We must introduce more photovoltaic outputs worldwide
because we need to reduce CO2 emission and circumvent
oil depletion. However, if we try to introduce more photo-
voltaic outputs to power grid systems, the systems may be-
come unstable because photovoltaic outputs fluctuate due
to the weather conditions. To overcome the natural fluc-
tuations of photovoltaic outputs, we should understand the
dynamics of the weather generating the photovoltaic out-
puts more deeply.

To achieve this goal, here we analyze a time series
of photovoltaic outputs to reveal their complex dynamics.
Important characteristics related to photovoltaic outputs
are one-day-periodicity, one-year-periodicity, and non-
negativity. While the periodicities are often taken into
account, non-negativity has been ignored when we ana-
lyzed the time series data. However, because the non-
negativity is an essential property of photovoltaic outputs,
we use Non-Negative Matrix Factorization [1] to decom-
pose the photovoltaic outputs. Then, we evaluate interac-
tions among components of the decomposition by a method
of Ref. [2], which uses recurrence plots [3, 4] and delay
coordinates for forced systems [5]. Furthermore, we verify
the obtained interactions with the extension [6] of Judd and
Mees method [7].

We will find complex interdependences among the com-
ponents of photovoltaic outputs.

2. Dataset

The dataset we use was a time series of photovoltaic out-
puts measured at 61 points in the central part of Japan. The
observation period is between November 2010 and April
2012. Although the original dataset has a value every 10
seconds for each point, we take the average over 1 hour
and analyze the averaged time series.

3. Methods

3.1. Non-Negative Matrix Factorization

Non-Negative Matrix Factorization [1] (NNMF) approx-
imates a matrix A by the multiplication WH of two matrices
W and H so that each element of the two matrices W and
H is non-negative. By NNMF, we can obtain a sparse ex-
pression because the number of rows in W and the number
of columns in H are small.

Because the results of NNMF depend on the initializa-
tion, we run NNMF 100 times for each number of rows in
W by changing the initial conditions.

The number of rows in W and the number of columns in
H are decided so that the Akaike Information Criterion [8,
9] becomes the smallest.

We apply NNMF to the dataset of photovoltaic outputs,
where each row corresponds to one of measured points and
each column corresponds to an hour on the time axis.

3.2. Estimating directional couplings

Then, H can be regarded as a time series whose rows
correspond to characteristic columns of W. Therefore, we
estimate directional couplings among these characteristic
columns. We use the method in Ref. [2]. The method of
Ref. [2] tests whether two time series are related or not. If
two components are related, then we test whether there are
directional couplings between them or not. If two compo-
nents are related and both directional couplings are denied,
then only a possibility is that there exists a common hidden
element driving two components. To deny the directional
couplings, we use recurrence plots [3, 4] and delay coordi-
nates for forced systems [5]. If x drives y, there are signifi-
cant thresholds for recurrence plots such that the recurrence
plot of x obtained using delay coordinates can cover the
recurrence plot of y obtained using delay coordinates. We
use its contra-position: If there are no significant thresholds
such that the recurrence plot of x can cover the recurrence
plot of y, then x does not drive y. By the contra-position,
we can deny the directional coupling from x to y.

In addition, we use the method of Ref. [6], which is the
extension of Judd and Mees [7], to validate the directional
couplings obtained by the method of Ref. [2]. Namely,
we check whether the directional couplings obtained by the
method of Ref. [2] actually contribute to improving the pre-
diction for each component or not.
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Figure 1: The number of rows in W vs the Akaike Informa-
tion Criterion. We choose 8 as the optimal number of rows
in W because the number minimizes the Akaike Informa-
tion Criterion.
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Figure 3: Temporal changes of H.

4. Results

We first minimize the Akaike Information Criterion to
obtain the optimal number 8 of rows in W (Fig. 1). Then,
we interpolate each column vector of W by using the lon-
gitude and the latitude of each measured point. Then, each
column vector tends to have a local peak spatially (Fig. 2).
This tendency means that each column vector can be re-
garded as a local irradiation condition centered at the peak.

The matrix H can be regarded as a time series of charac-
teristic columns in W, part of which is shown in Fig. 3. It
seems that each row of H changes according to the weather
conditions. In addition, it is not clear how these rows inter-
act with each other.

To resolve the interactions, we use the methods of
Refs. [2] and [6], simultaneously. The obtained directional
network is shown in Fig. 4. The network implies that the
bases 1, 2, and 3, which have their peaks close to the center
of the analyzed region, tend to depend on the bases of the

surrounding area.

5. Discussion

The results shown in Fig. 4 mean that the weather condi-
tions, and thus photovoltaic outputs, have complex dynam-
ics, which cannot be separated into pieces easily. Bases 4-8
were not explicitly driven by the other bases possibly be-
cause the peaks of these bases were located at the edges of
the considered region. Therefore, if we extend the region
to a wider area, these bases will be also in a well connected
network that cannot be separated easily.

6. Conclusions

We have investigated the underlying dynamics behind
the photovoltaic outputs. After decomposing the photo-
voltaic outputs into non-negative components, and infer-
ring directional couplings, we found that there are com-
plex interdependences among local photovoltaic conditions
which cannot be separated into pieces easily. We will try to
predict photovoltaic outputs by using this obtained knowl-
edge well.

Acknowledgments

We used the solar irradiation data measured by the
actinometers installed by Chubu Electric Power Company
through “The Project for Power System Stabilization at
the Mass Introduction of Photovoltaic Generation”. Our
data analysis is a part of “The Demonstration Project of
Forecast Technologies for Photovoltaic Generation” sup-
ported by Ministry of Economy, Trade and Industry. This
research was partially supported by Core Research for
Evolutional Science and Technology (CREST), Japan Sci-
ence and Technology Agency (JST), and Aihara Innova-
tive Mathematical Modelling Project, the Japan Society for
the Promotion of Science (JSPS) through its “Funding Pro-
gram for World-Leading Innovative R&D on Science and
Technology (FIRST Program)”, initiated by the Council for
Science and Technology Policy (CSTP).

References

[1] D. D. Lee and H. S. Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol.401, pp.788–791, 1999.

[2] Y. Hirata and K. Aihara, “Identifying hidden common
causes from bivariate time series: a method using re-
currence plots,” Phys. Rev. E, vol.81, art. no.016203,
2010.

[3] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Re-
currence plots of dynamical systems,” Europhys. Lett.
vol.4, pp.973-977, 1987.

- 62 -



base 1

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 2

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 3

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 4

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 5

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 6

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 7

136.5 137137.5 138

34.5
35
35.5
36
36.5

base 8

136.5 137137.5 138

34.5
35
35.5
36
36.5

Figure 2: The column vectors of W represented by an interpolating function spatially. Each panel represents each column
vector, which we call a base.
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Figure 4: Directional couplings among bases of photovoltaic outputs. The position of each base is located according to the
longitude and the latitude of the peak of each base shown in Fig. 2. Each arrow means that there is a directional coupling
from one base to the other.
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