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Abstract—We developed a low-power consuming elec-
tronic circuit that is endowed with dynamics similar to a
class of neurons whose gap-junction-connected networks
can produce distinctive complex and synchronized behav-
iors (Class I∗). The developed circuit was evaluated using
circuit simulators and numeric calculation and indicated to
have ability producing complex and synchronized behav-
iors very similar to them.

1. Introduction

The nerve system provides animals with intelligent and
quick responses to both internal and external perturbations,
powerful tools to maintain their homeostasis and survive
in the environment. Electrical activity in the nerve system,
which is believed to be playing crucial roles in such in-
formation processing ability, is mainly generated and con-
trolled by the network of neuronal cells connected each
other via synapses. The membrane potential in the neu-
ronal cell is one of its sources and mediators. Each neu-
ronal cell has capability to intrinsically produce spikes,
pulse-like electrical activities, in its own rhythmical or
chaotic dynamics. In the recent neuroscientific field, it is
common understanding that various behaviors invoked by
interaction between rhythmic and chaotic activities in neu-
ronal cells mediated by synapses are the key to elucidate
the mechanism under information processing in the nerve
system. There exist various types of such behaviors includ-
ing rhythmic patterns generated by motion pattern genera-
tor networks [1] and more complex ones in cerebral cortex
that may contribute to higher functions.

The silicon neuron and synapse are electronic circuits
that reproduce the electrical activity in the neuronal cell
and the synapse. They are in most cases implemented using
analog very-large-scale integrated (aVLSI) circuit technol-
ogy to simulate the dynamics of the membrane potential
in real time by more compact and lower-power consum-
ing systems than current digital computers. The silicon
neuronal network, a network of silicon neurons connected
via silicon synapses, is expected to provide similar ability
to neuronal networks by compact and low-power consum-
ing circuits and thus be applied to implantable biomedical
devices, real-time simulators of large-scale neuronal net-
works, brain-like information processing systems that can
be integrated in such as mobile robots.

In this article, we focus on a model of an interneurons’
network connected by gap junctions (GJs) [2]. The GJ is
a tiny direct connection between the intracellular fluids of
two neuronal cells, which is electrically a linear resister
whose conductance depends on various factors including
concentration of neuromodulators. This model is a simple
GJ-connected network of a two-variable qualitative neuron
model that belongs to Class I∗, a subclass of Class I in the
Hodgkin’s classification [3]. It was reported to produce
synchronized spiking, spatio-temporally chaotic behaviors,
and complex alternation between them depending on the
conductance of the GJs. This raised the possibility that GJ-
connected interneuron networks are one of the sources of
complex activities in the brain. We designed a network of
Class I∗ silicon neurons connected via GJ circuits, which is
expected to be an interneuron network subsystem in future
possible “silicon brains” and a signal source with tunable
complexity applicable for example to associative memories
whose dynamics can be altered between switching and con-
verging. In the next section, the circuitry, model, and sim-
ulation results of our silicon neuron and GJ are explained.
Simulation results of a GJ-connected silicon neuronal net-
work is reported in section 3.

2. A Class I∗ silicon neuron and a silicon GJ

2.1. Circuit and Model

In our previous works [4][5], we developed a design
approach for silicon neuron models that allows construc-
tion of silicon-implementation-oriented qualitative neuron
models. It is a solution to the inefficiency in the circuitries
of the silicon neurons that originates from incompatibil-
ity between electrical characteristics of biological elements
such as ionic channels and the transistors: copying com-
plex dynamics in a neuronal cell requires complex circuitry
[6], whereas realizing simple circuitry has to sacrifice com-
patibility of dynamics for example by introducing jump of
the system state [7]. The basic idea of our approach is
re-constructing the bifurcation and the phase-plane struc-
tures in an ordinary polynomial-based qualitative models
into another model composed of the characteristics curve
functions of elemental circuits.

Elemental circuits in our silicon neuron are differen-
tial pairs composed of Metal-Oxide-Semiconductor Field-
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Figure 1: Elemental circuits in our silicon neuron. Circuits
for (a) fx(v), (b) gx(v), and (c)rn(n).

Effect Transistors (MOSFETs) operated in their subthresh-
old domain. Their circuits are simple and compact (see Fig.
1) and consume very low-power below several nano watts.
These curves are similar to hyperbolic tangent and have mi-
nor variations depending on supplementary circuits. The
equations of our model is as follows:

Cv
dv
dt

= −gv(v)+ fm(v)− rn(n)+ Ia+ Istim, (1)

Cn
dn
dt

= −gn(v)+ fn(v)− rn(n), (2)

where v and n respectively represent the membrane po-
tential and a recovery variable. Two constantsCv andCn

represent capacitance responsible for the time constants of
these variables. CurrentsIstim andIa are an external stim-
ulus and a constant bias currents. Functionsfx (x = m
andn), gx (x = v andn) and rn are the ideal characteris-
tics curves of the circuits whose schematics are depicted in
Fig. 1. Their equations are

fx(v) =
Mx

2
{tanh(

κ

UT

v− δx
2

)+1}, (3)

gx(v) = Sx tanh(
κ

UT

v− θx
4

), (4)

rn(n) =
Nn

2
{tanh(

κ

UT

n− ǫn
6

)+1}, (5)

whereUT is the thermal voltage (approximately 26mV)
and κ is the capacitive-coupling ratio that is dependent
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Figure 2: Block diagram of our silicon neuron.

on the fabrication process and the operating condition of
MOSFETs (between 0.6 and 1.0 in most cases). Parame-
tersMx, δx, Sx, θx, Nn, andǫn as well asIa are specified by
externally applied voltages to the circuit.

This model can be implemented by a circuit whose block
diagram is illustrated in Fig. 2. Here, blocks labeledfm(v)
and fn(v) correspond to the circuit in Fig. 1(a) and those
labeledgv(v) andgn(v) to one in Fig. 1(b). The current-
mode integrator block is composed of the circuit in Fig.
1(c) and a capacitorCn, whose output currentIn codes
value ofrn(n). Two switches SW1 and SW2 are closed and
open in normal operation as a silicon neuron. The voltage-
clamp amp block allows drawing the nullclines after circuit
fabrication by a similar principle to the voltage-clamp ex-
periment in the electrophysiological field. This function
provides a powerful tool for tuning the externally applied
parameter voltages to cancel the effect of the inevitable fab-
rication variation [5]. The nullclines are drawn by opening
SW1 and closing SW2 (nullcline mode) and then sweeping
Vc in a desired range sufficiently slowly. PlottingIv andIn

for eachv value draws thev- and thern-nullclines in the
v-rn phase plane. For tractability of the model, we rewrite
Eqs. (1) and (2) as follows by redefiningrn as newn.

Cv
dv
dt

= −gv(v)+ fm(v)−n+ Ia+ Istim, (6)

Cn
dn
dt

=
κ

UT

n(Nn−n)
3Nn

(−gn(v)+ fn(v)−n). (7)

For GJ circuit, a transconductance amplifier is used to
simulate GJ’s linear response to the difference betweenv in
two neurons, whose model is as follows:

I i j = Ggj tanh(
κ

UT

v j −vi

4
), (8)

whereI i j is current flows into thei-th neuron from thej-th
neuron, andGgj is the conductance of the silicon GJ. Be-
causev ranges between -100 mV and 50 mV, difference
betweenv can be at most 150mV. A pair of source degen-
eration transistors are inserted at the input stage (Fig. 3(a))
to expand linearity of the response curve and avoid satura-
tion of I i j . This does not increase power consumption and
requires only two additional transistors.

- 607 -



Vdd

VssVssVss

Vdd Vdd

Vss

Vdd

Vss

VinN =  100mV

VinN =     0mV

VinN = -100mV

(mV)-200-400 0 200 VinP

-500

-250

0

250

500

(pA)

(a) (b)

Figure 3: A transconductance amplifier used as silicon GJ.
(a) Schematics. (b) characteristics curves calculated by
SPECTRE circuit simulator.

2.2. Simulation results

We verified behavior of our silicon neuron circuit us-
ing SPECTRE circuit simulator with TSMC .25µm CMOS
process design library. Based on thev- and then-nullclines
drawn in the nullcline mode and time-series data obtained
by normal operation mode, value of the parameters are de-
cided so that our silicon neuron belongs to Class I∗. Figure
4(a) illustrates the nullclines when no external stimulus is
applied. They have three intersections and stability of these
equilibrium points (S), (T), and (U) were estimated to be
stable, a saddle, and unstable by transient simulation with
several initial states sufficiently near them. If sustained ex-
citatory stimulus is applied, thev-nullcline is displaced up-
ward, which causes a saddle-node bifurcation and generate
a stable limit cycle (Fig. 4(b)). Stability of the limit cycle
could be estimated by transient simulation in the same way
as for the equilibrium points. It is well known that such a
bifurcation scenario induces periodic spiking in responseto
sustained excitatory stimulus, whose frequency is very low
at its onset and increased in response to the strength of the
stimulus (Class I) [8]. This phenomenon was confirmed in
our circuit by transient simulation as shown in Fig. 5. In
Fig. 4(b), we can confirm that there exists a narrow chan-
nel, a region where both of the nullclines stay very close
to each other, which is the key condition that discriminates
the Class I∗ neurons from the rest of Class I neurons.

3. A GJ-connected silicon neuronal network

Conditions of Class I∗ are necessary but not suffi-
cient ones for the distinctive chaotic behaviors in its GJ-
connected network. Simulation of a GJ-connected network
of our silicon neurons were performed to confirm its ability
to produce such behaviors. The results in this section were
obtained by numerical simulation of the system equations
(6), (7), and (8) by XPPAUT and scilab softwares because
amount of calculation is too large for circuit simulators in
our computer environment. In this network model, 6 sil-
icon neurons are connected via silicon GJs in ring topol-
ogy where each neuron is connected with two neighbor-
hoods. In Fig. 6, 8 largest Lyapunov exponents per sec-
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Figure 4: Thev-n phase plane drawn in the nullcline mode
using SPECTRE circuit simulator. (a)Istim = 0. There are
three equilibrium points (S), (T), and (U). (b)Istim∼ 14 pA.
An equilibrium point (U) and a stable limit cycle exist.
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Figure 5: Nullclines in of our silicon neuron circuit when
(a) Istim = 0, (b) Istim ∼ 7 pA, (c) Istim ∼ 14 pA. Calculated
by SPECTRE circuit simulator.
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Figure 6: Lyapunov spectrum of a GJ-connected network
of 6 silicon neurons.

ond of this network calculated by Wolf’s method [9] where
its linearized system was given analytically. While the sili-
con GJ’s conductance,Ggj, is sufficiently strong, the largest
exponent stays around 0 and the others are negative. In
this situation, all the neurons are synchronized (Fig. 7(a)).
As Ggj is decreased, the second largest exponent reaches
0 where quasiperiodic behaviors are observed (Fig. 7(b)),
and then the two largest ones becomes positive where al-
ternation between spatio-temporally chaotic and synchro-
nized behaviors are observed (Fig. 7(c)). When more ex-
ponents have positive value, synchronized phase becomes
rare (Fig. 7(d)). After another domain of two largest zero
exponents, the largest one becomes the sole zero exponent,
where anti-phase synchronization between two groups of
staggered 3 neurons is observed (Fig. 7(e)). Every sili-
con neuron spikes in its own phase depending on the initial
condition whenGgj is arbitrarily zero.

4. Concluding remark

We have developed a simple Class I∗ silicon neuron and
verified its ability to generate distinctive complex and syn-
chronized activities in a GJ-connected network. Power
consumption of this silicon neuron circuit is about 30 nW
in SPECTRE simulation. Circuit experiments will be per-
formed and reduction of power consumption down to about
15 nW by careful parameter tuning will be tried.
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