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Abstract—We investigate the dynamical properties of
a neural network with dynamic synapses, whose transmis-
sion efficacy is modulated by short-term plasticity, and we
use a mean field model that approximates the population
dynamics of spiking neurons. In particular, we consider a
neural network with recurrent connections via depression
and facilitation synapses, and we analyze the influence of
synaptic modulation on the dynamics of synaptic activity
via slow-fast analysis with time-parameterized bifurcation
parameters. The model is described by three variables: one
represents synaptic activity, whereas the other two repre-
sent modulation in synaptic transmission efficacy. The vari-
ables that represent the synaptic modulation can be consid-
ered as slow variables that affect the properties of synaptic
activity, which can be regarded as the fast variable. The
analysis indicates that an attractor in the fast system corre-
sponding to an active state of the neural network appears
or disappears according to the activities of the neural net-
work. The concept of dynamical reorganization of the at-
tractor structure can potentially uncover the mechanism of
flexible brain functions.

1. Introduction

A population of neurons forms a network with synap-
tic connections, which transmit electric signals and con-
tributes to various information processing in the brain. The
dynamics of a neural population is often characterized by
the attractor structure. In the state of a neural network
characterized by an attractor, a pattern of neural activity
is maintained for a while, even under noise or disturbance.
For instance, Hopfield proposed that in a neural network
model of memory association, the process of memory re-
trieval can be considered as a process of convergence to an
attractor [1]. Further, the mechanism of the working mem-
ory in the brain can be understood on the basis of the at-
tractor structure. The dynamics of a population of neurons
connected with a certain type of synapses forms a bistable
system [2]; one of the attractors is the state in which neu-
rons maintain their activity by sending excitatory signals
to each other, and the other attractor is the resting state of

the neurons. Such a neural network that acts as a work-
ing memory is able to retain a fragment of information by
switching its state. The concept of the attractor structure is
crucial to understanding the mechanism of representation
and processing of information in the brain.

In the abovementioned studies, the strength of synaptic
connections is assumed to be static. However, recent physi-
ological studies have revealed that the transmission efficacy
of synapses undergoes dynamic short-term changes with
the consecutive activation of presynaptic neurons [3]. This
dynamical property of synapses is known as short-term
plasticity, and such synapses are called dynamic synapses.
The modulation in the synaptic transmission efficacy ef-
fectively changes the formation of the network structure.
Thus, the attractor structure of the network are also influ-
enced by the dynamic synapses. This concept, referred to
as dynamical reorganization of the attractor structure, is
useful for understanding the functions of neural networks.
For instance, the mechanism of flexible information repre-
sentation in the prefrontal cortex can be explained on the
basis of this concept [4].

The time scales of changes in synaptic modulation with
short-term plasticity are longer than those of neural mem-
brane potentials or synaptic activities that represent the ra-
tio of open receptor channels in the synapses. Thus, vari-
ables that describe synaptic activity and synaptic modula-
tion can be considered as fast and slow variables, respec-
tively. In other words, slow variables can be considered
as bifurcation parameters that influence the properties of
a system with fast variables (fast system), and such slow
variables reorganize the attractor structure of the fast sys-
tem.

Slow-fast analysis focuses on the differences between
the time scales of dynamical variables, and it is potentially
applicable to various biological and neural systems. For in-
stance, the dynamics of a bursting neuron can be explained
by this approach [5, 6]. A slow variable in a neuron acts as
a bifurcation parameter and switches the properties of a fast
system between the resting state and the firing state, which
are characterized by a stable equilibrium and a limit cycle,
respectively. In previous studies, a single variable has been
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primarily considered as the slow variable.
In this paper, we analyze the dynamical properties of a

neural network with dynamic synapses, including both de-
pression and facilitation synapses, by considering that mul-
tiple slow variables are parameterized with the time vari-
able. In the next section, we describe the mean field model,
which consists of variables that represent synaptic activity
and synaptic modulation. Then, we analyze how the attrac-
tor structure in the fast system is reorganized via synaptic
modulation by using the abovementioned slow-fast analy-
sis. Finally, we discuss the possible interpretations of the
analysis results.

2. Model

We consider the mean field model that approximates the
population dynamics of a spiking neural network with re-
current connections via dynamic synapses [4]. In the mean
field model, the firing rate r is given by a firing rate re-
sponse function f (g) as a function of input conductance g:
r = f (g), where f (g) = r0(g − g0)N/{ΘN + (g − g0)N } when
g > g0; otherwise, f (g) = 0. We set r0 = 0.070, g0 = 8.183,
Θ = 2.283, and N = 2 [4]. When the neurons fire, synapses
on the axonal terminal of the neurons will be activated. In
the present model, the variables s, x, and u represent the
synaptic activity, the ratio of releasable neurotransmitters,
and the calcium concentration, respectively. The synaptic
activity s represents the ratio of open receptors that induce
the post synaptic current. We assume that s converges to a
certain steady state with a time constant τs = 90 [ms],

ds
dt
=

s̄(r) − s
τs

, (1)

where s̄(r) = rτs(1 − exp(−1/(rτs))) is the steady state of
the synaptic activity as a function of the firing rate. When
the synapses are activated, the ratio of releasable neuro-
transmitters x transiently decreases and the calcium con-
centration u transiently increases, depending on the firing
rate. If the neuron does not fire, x and u recover its steady
states x = 1 and u = U with the time constants τx and τu,
respectively. This situation can be described by the equa-
tions [7, 8]

dx
dt

=
1 − x
τx
− uxr, (2)

du
dt

=
U − u
τu
+ U(1 − u)r, (3)

where U = 0.3 is the steady state of u. The synaptic effi-
cacy (the synaptic modulation) is proportional to the prod-
uct xu. Differences between depression and facilitation
synapses are specified by parameters τ x and τu.

Here, we consider the neurons that are mutually con-
nected with depression or facilitation synapses. The input
conductance for the population of neurons is given by

g(t) = I0 + gRs(t)x(t)u(t)/U + Ie(t), (4)

where I0 = 8 is the constant bias input and gR is the
absolute strength of the recurrent connection. The term
x(t)u(t)/U is unity in the resting state, and it tends to be
larger (smaller) than unity when the synapses are facilitated
(depressed). Ie(t) is a time dependent external input. Here,
we use τx = 500 [ms], τu = 150 [ms], and gR = 3.2 for
a network with depression synapses, and τ x = 150 [ms],
τu = 1000 [ms], and gR = 1.9 for a network with facilita-
tion synapses.

3. Results and Analyses

We analyze the dynamical properties of the neural net-
work according to the following procedure. Suppose that
x is a whole variable in a given dynamical system and that
it develops according to the differential equation dx/dt =
F(x). First, the time course of x(t) is obtained by solving
the differential equation with a given initial state. The vari-
able x is divided into fast variables xf and slow variables xs.
Then, we consider the following differential equation with
respect to the fast system,

dxf

dt
= F f (xf , xs(t′)), (5)

where F f returns the part of the fast variables of F. We
perform bifurcation analysis on the fast system with respect
to the bifurcation parameters xs parameterized by the time
t′. We denote an attractor on the fast system by merely
calling it an attractor.

In the present neural network model, the time scales of
changes in variables x and u are relatively longer compared
with that in s. Thus, in the following analyses, we regard x
and u as slow variables and s as the fast variable.

3.1. Network with Depression Synapses

Figure 1 shows a typical response in the recurrent net-
work with depression synapses when the activation input
is applied during 0.3 < t < 0.5 [s] (Fig. 1d). The neural
network is transiently activated by the activation input and
its activity decay with a decrease in synaptic efficacy (Fig.
1b). The variables x and u are decreased and increased, re-
spectively; their product xu, which represents the synaptic
efficacy, is decreased (Fig. 1c).

In Figure 1b, the blue curves indicate the emergence
of equilibrium in the fast system; the solid and dashed
curves represent stable and unstable equilibrium, respec-
tively. The emergence of equilibrium changes with time. In
the initial state, there exists an unstable equilibrium (UE)
point and two stable equilibrium (SE) points. One of the
SE points corresponds to the active state (SEa) with a rela-
tively large value of s (s ≈ 0.9), and the other corresponds
to the resting state (SEr) with a smaller value of s (s ≈ 0).
The synaptic activity s initially remains in the resting state
(SEr).

By applying the activation input, UE and SEr disappear,
and the synaptic activity s increases toward the active state
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Figure 1: Response in the network with depression
synapses. (a) Schematic attractor landscapes. (b) Time
course of s (shaded black curve) and sets of equilibrium
point. Stable equilibrium (SE) and unstable equilibrium
(UE) are indicated by solid and dashed blue curves, respec-
tively. The SE that corresponds to the active and resting
state is denoted by SEa and SEr, respectively. The points of
saddle-node (SN) bifurcation are indicated by circles. The
red area represents the period of the activation input. (c)
Time course of x, u, and their product xu, which represents
the synaptic efficacy. The steady state of xu is indicated by
the dashed line. (d) Time course of the external input.

(SEa). After the application of the activation input, the pair
of unstable and stable equilibriums re-emerges and s con-
verges to SEa. This situation is shown in the schematic
attractor landscape (Fig. 1a left). As time goes by, UE and
SEa approach each other and disappear via saddle-node bi-
furcation in the fast system. s increases until this bifurca-
tion point and then decreases and converges to the resting
state (Fig. 1a middle). Then, the pair of UE and SEa reap-
pears, and the network recovers its initial state (Fig. 1a
right).

The reorganization of the attractor structure illustrates
the changes in the functions of a neural network. This ini-
tial bistability of the resting and active states characterizes
the mechanism of the working memory, in which neurons
send excitatory signals to each other and maintain their ac-
tivity in the brain [2, 8]. With this bistability, the network
acts as an element of short-term memory, which stores a
fragment of information in its active state. This active state
is triggered by the activation input, but as time goes by, the
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Figure 2: Response in the network with facilitation
synapses. The format is the same as that of Figure 1. The
blue area indicates the period of the deactivation input.

network loses its stability, i.e., its ability to hold informa-
tion. Finally, the network returns to the resting state and
recovers the ability of short-term memory.

3.2. Network with Facilitation Synapses

Figure 2 shows the response of the network with facilita-
tion synapses when we applied the activation, deactivation,
and perturbation input. Here, we set the absolute strength
of recurrent connection gR to be relatively small; thus, in
the initial state, SEa does not appear (Fig. 1a left). In-
stead, SEa appears because of the facilitation of synapses.
By applying the activation input, the synaptic efficacy is
increased, and SEa appears even after the deactivation of
neural activity (Fig. 1a middle).

Because of this facilitation of synaptic efficacy, the net-
work tends to be easily activated by a perturbation input
(Fig. 1a right). Figure 2b shows that a network with facil-
itated synapses can be easily activated by the perturbation
input during 1.3 < t < 1.5 [s]. We confirmed that the net-
work cannot be activated by the perturbation input without
the facilitation of synaptic efficacy caused by the activation
input. If the perturbation input is not applied, the pair UE
and SEa disappears via saddle-node bifurcation.

In a network with facilitation synapses, the attractor is
newly formed in the fast system by the activation input.
The response of the network for a given external input
is influenced by the formation of the attractor. This in-
dicates that the ability to hold information in the neural
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network is transiently induced by the activation input. In
other words, this situation can be interpreted as a context-
dependent property of neural activity.

4. Discussion

We analyzed the dynamical properties of a neural net-
work with depression and facilitation synapses by consid-
ering the modulations in synaptic efficacy as slow variables
or bifurcation parameters. The analyses show the dynami-
cal reorganization of the attractor structure, which charac-
terizes the functions of the neural network. In a network
with depression synapses, the attractor that corresponds to
the active state of the neural network is destabilized be-
cause of synaptic depression. The destabilization of the
attractor indicates the loss of the ability to hold informa-
tion. In a network with facilitation synapses, the attractor
is newly formed by the activation input and influences the
subsequent neural response.

We emphasize that the roles of a neural network can be
manifested by knowing the formation of the attractor struc-
ture and that the dynamical reorganization of the attractor
structure describes changes in the network function. The
state of the neural network will converge to one of attrac-
tors in the neural system. Each attractor may represent a
piece of information or a certain mental state. Dynami-
cal reorganization of the attractor structure leads to a re-
mapping between an attractor and a piece of information
and changes the roles in information representation [4].

In the ordinary framework of dynamical system theory,
the dynamics of the present neural network model is merely
characterized as a transient process of convergence to an
equilibrium state. Although slow-fast analyses provide a
clear-cut view for a system including fast and slow vari-
ables, only one variable is considered to be the slow vari-
able in most conventional slow-fast analyses. However,
in general, multiple variables can be considered as slow
variables. In the present analysis, variables were divided
into fast and slow variables, and the slow variables were
regarded to be parameterized by time. Slow-fast analysis
with time-parameterized bifurcation parameters allows us
to extend it to systems consisting of many more slow vari-
ables.

Although we applied this method to a simple neural net-
work model with two slow variables that represent synaptic
modulation, it can be applied to a more complex neural net-
work that may be a more functional network. Furthermore,
this approach can be applied to other neural systems or bio-
logical systems that include different time scales of dynam-
ics. Our approach should be evaluated on such systems in
the future studies.
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