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Abstract—We study the integration/segregation
problem from the viewpoint of complex networks, but
considering that the network topology is not static but
there is an adaptive mechanism acting on the links.
Our goal is to identify under which conditions network
synchronization occurs and what structural properties
are present in the network topology when this hap-
pens. In particular, we experimentally compute the
main descriptive structural properties of the network
when it has been modified with the proposed mech-
anism, and it is elucidated the relationship between
these results and the observed synchronization at both
the local and global scale. Our main finding is that
modularity, a global feature, can naturally emerge in
a network when evolving links are considered, that is,
by means of dynamical properties at the local scale.

1. Introduction

The majority of articles on complex networks have
focused, until recently, on either the local scale struc-
ture of real complex systems or their macroscopic
properties. However, neither of these descriptions can
adequately describe the important features that com-
plex systems exhibit due to their organization in mod-
ules. Since the seminal work of Girvan and Newman [1]
on uncovering the modular network structure in social
and biological networks, it was evident that nature ex-
hibits, in many cases, communities (groups of highly
interconnected nodes that are sparsely connected to
the rest of the network). Such a modular organization
has only recently been recognized to be crucial in the
way in which a complex system works [2].

Among the questions that must be addressed in or-
der to provide a full understanding of modularity, one
of the most important is that of growth and forma-
tion of such mesoscales in complex systems. Most
existing models for network growth introduce mod-

ularity through topological arguments [3]. Yet, very
little attention has been paid to mechanisms based
on the dynamical behavior of the components, a com-
mon feature in many real systems. The modeling of
growing mechanisms that enable the description of the
real evolutionary processes involved in the formation
of mesoscales is necessary.

On the other hand, another important open problem
is the role of mesoscales in the production of a collec-
tive and coordinated dynamics. It is evident that the
existence of communities in a task-performing network
is closely related to the coexistence of two seemingly
but not fundamentally opposite phenomena: the es-
tablishment of collective subtasks in the network (seg-
regation of the network) and the coordination of those
subtasks at a global scale (integration). The hierarchi-
cal nature of the function of complex systems is not
yet fully elucidated; a thorough treatment of the re-
lation between network structure and its dynamics at
mesoscale level is also of interest.

A nice example of this open topic can be found in
the neural system [4, 5, 6], for both the visual and au-
dio areas, in which it is observed a functional segrega-
tion of anatomically and physiologically different areas
and a global integration resulting in a unique percep-
tion. It is, then, needed to examine the relationship
between the structural substrate of a complex system
(its local scale) and its effective dynamics (its global
scale) taking into account the connectivity patterns at
the mesoscale.

In particular, a basic coordination task is synchro-
nization: an ensemble of individuals adjust their inner
dynamics to that of the others. This is found in neural
ensembles but other examples include fireflies flashing
at the same rhythm, the muscle cells in the heart si-
multaneously beating, and an audience of a concert all
applauding in unison to convince the artist to perform
an encore [7].
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In this paper, we present a model for complex net-
works in which the formation of the mesoscale is dy-
namically driven by a simple adaptive rule. More pre-
cisely, we consider a network formed by Kuramoto os-
cillators, coupled through evolving links. The links are
defined to be bistable; those coupling nodes with sim-
ilar dynamics are reinforced, while those linking non-
synchronous nodes are weakened. We show that the
presence of modularity is related to the emergence of
collective subtasks, which, in turn, are globally coor-
dinated. The rest of the paper is structured as follows:
Section 2 presents the iterative decentralized mecha-
nism for adapting the network topology, Section 3 pro-
vides the experimental results, and finally in Section
4 we conclude the present work.

2. Topological Adaptation under a Synchro-
nization Process

We study the dynamics of synchronization on an
undirected network through a Kuramoto model [8, 9]:
each node n ∈ {1, . . . , N} is characterized by a phase
θn and an intrinsic frequency ωn. The underlying net-
work topology is a complete graph: each node is linked
to all the other nodes; a coupling strength parameter
σ determines how strongly the phase of a node is af-
fected by those of the other nodes. In this work we
regard σ as a global constant.

We additionally introduce a weight for each link,
thus producing a weighted network; we denote by
wmn ∈ [0, 1] the weight of the link between the nodes
m and n. Links that are beneficial to an improve-
ment in the degree of synchronization are reinforced,
whereas links that damage it will be weakened. Such
an evolution of the link weights in response to the net-
work synchronization is carried out in a bistable fash-
ion: each weight will asymptotically tend to one of the
values in {0, 1}, thus giving rise to an unweighted final
network topology.

2.1. Weight Evolution

Using the established notation and with the intro-
duction of the weight term, the individual dynamics
over time for the node n in our modified Kuramoto
model are expressed as

θ̇n = ωn +
σ

N

N∑
m=1

wmn sin(θm − θn). (1)

We propose an evolution of the link weights,
parametrized by a constant pc, to be carried out in
the following manner:

ẇmn = (pmn − pc)wmn(1− wmn), (2)

where pmn is the phase correlation of the nodes m and
n,

pmn :=
1

2

∣∣∣eiθm(t) + eiθn(t)
∣∣∣ . (3)

The phase correlation yields one for pairs of nodes that
have equals phases and zero for pairs that have oppo-
site phases, θn = θm ± π. The parameter pc is the
correlation threshold: a link weight will be reinforced
when pmn > pc and weakened when pmn < pc; for
pmn = pc the derivative will be zero and no change is
made.

2.2. Measures of Global and Local Synchro-
nization

It is important to note that the equality of phases is
merely an instantaneous measure and does not imply
long-term synchronization as each node has its individ-
ual intrinsic frequency. The degree of long-term global
synchronization in the Kuramoto model is tradition-
ally measured in [0, 1] as

Rg :=

⟨
1

N

∣∣∣∣∣
N∑

n=1

eiθn(t)

∣∣∣∣∣
⟩

t

. (4)

When Rg ≈ 1, the network is considered synchronized,
whereas Rg ≈ 0 is a sign of asynchronous behavior.
However, a network may be globally unsynchronized
and yet have groups of nodes that — locally — are
highly synchronized. Measuring the degree of local
synchronization requires another approach. We mea-
sure the degree of local synchronization at a node n
as

Rn
ℓ :=

⟨∣∣∣∣∣
∑N

m=1 wmne
iθm∑N

m=1 wmn

∣∣∣∣∣
⟩

t

(5)

and then average over this measure to obtain the de-
gree of local synchronization in the network as a whole
at a given time:

Rℓ :=
1

N

N∑
n=1

Rn
ℓ . (6)

2.3. Modularity

After the weight evolution mechanism of Section 2.1
converges to a final unweighted topology, we measure
structural properties of the resulting network. In the
following, we still refer to the link weights as wmn,
but now they only take on values in {0, 1}, where zero
means that the link is not present in the network and
one means that it is.

The presence of communities can be quantified in
terms of modularity, as proposed by Newman [10],

M =
1

2M

∑
m,n

(
wmn − kmkn

2M

)
δ(cm, cn), (7)
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in which the variable cn indicates the cluster to which
node n belongs, δ is the Kronecker delta function, and
M is the number of links in the network. We compute
the modularity based on a community structure ob-
tained by means of the algorithm of Blondel et al. [11].
Notice that this community structure is not necessar-
ily the one optimizing modularity, as this constitutes
a computationally demanding problem in itself.

3. Results

In this section, we present numerical experiments on
the proposed model for adaptive topology creation by
weight evolution in a modified Kuramoto model. We
begin by discussing the parameter selection and then
present results of the global and local degree of syn-
chronization and the values of the structural properties
measured, as defined in the previous section.
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Figure 1: On the top, the global synchronization is
depicted using Eq. 4. At the bottom, it is the local
synchronization measured with Eq. 5. In both plots,
the horizontal axis is the correlation threshold pc and
each curve corresponds to a different value of σ.

3.1. Parameter Selection

The reported experiments were carried out with
complete networks of N = 300, meaning that the ini-
tial topology has N(N − 1)/2 = 44850 links. The
intrinsic frequency ωn of each node was chosen in-
dependently and uniformly at random in the interval
[0.8, 1.2]. This was chosen to balance the time scales
of the node and link dynamics as to keep the link dy-
namics slower, letting the nodes complete several cy-
cles before the links converge. Kuramoto points out
that the initial phases are not relevant for the final
state of synchronization in the original model [7, 9];
hence we choose each θn uniformly at random in the
interval [0, 2π). The initial values for the link weights
wmn were chosen uniformly at random in the interval
(0, 1).

The first parameter varied in the experiments is
the correlation threshold pc from 0 to 1 with in-
crements of 0.025. The second parameter was σ
running from 0.2 to 0.6. Our initial experiments
revealed that the mechanism was less sensitive in
some ranges, thus we used the following values of σ:
{0.20, 0.22, 0.24, 0.26, 0.30, 0.35, 0.40, 0.50, 0.60}. For
each combination of pc and σ, we made 100 repeti-
tions to report the average values over all sets.

3.2. Results Regarding the Degree of Synchro-
nization

Figure 1 shows the degree of global and local syn-
chronization of Eq. 4 and Eq. 5, respectively, in the
final topology weight evolution under different values
of σ and pc. A transition is observed at σ ≈ 0.26
for values of pc approximately from 0.05 up to 0.70.
In this transition we move from having global and lo-
cal synchronization (the region on the left) to have no
global synchronization but local synchronization (the
region on the right). Interestingly, the critical coupling
strength coincides with the one predicted for the phase
transition of the Kuramoto model [8, 9].

3.3. Results Regarding Structural Properties

Modularity, shown in Figure 2 experiences a rapid
transition at pc ≈ 0.65 over the combinations (pc, σ).
We observe that for pc > 0.650, the final topology is
increasingly modular (using the definition of Eq. 7),
regardless of the value of σ.

We find that the resulting network for pc below the
transition is a completely connected graph and, as pc is
increased, we observe that the final topology has less
and less links, giving rise to communities and, con-
sequently, incrementing the modularity. The specific
value of pc for which transition appears depends on
the initial distribution of the natural frequencies, g(Ω).
However, in all cases, there is a transition to a modular
network.

- 600 -



M

pc

0.60

0.50

0.40

0.35

0.30

0.26

0.24

0.22

0.20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2: Modularity as defined in Eq. 7. The plot,
covering the (pc, σ) combinations described in the text,
has the correlation threshold pc on the horizontal axis
and modularity on the vertical axis, for the different
values of the coupling strength σ.

4. Conclusions

We have proposed an adaptive, bistable model for
network synchronization. We implement both local
and global synchronization measures. The proposed
rule for link-weight evolution avoids having to define
an initial network topology instead of having to choose
a generation model, and then optimizes the network
topology for easier synchronization. We also note that
even in the absence of global synchronization, a high-
degree local synchronization can prevail. The experi-
mental results show that the proposed model is ade-
quate for studying synchronization in conjunction with
topology formation, due to its bistable nature.

We characterize the resulting network topologies in
terms of modularity and observe that synchronization
is improved in networks that are modular. This is
of interest as existing literature focuses on studying
synchronization under pre-imposed topologies; our ap-
proach allow the study of how synchronization and
alike processes affect the formation of communities,
to complement existing work on how the presence of
communities affects synchronization.
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