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Abstract—Tolerance of biological networks against lo-
cal perturbations is still not completely understood, be-
cause both structure and dynamics are often complex in
such networks. Here we study the role of synaptic con-
nections in robustness of dynamic activities in neuronal
network models. We show that the dynamical robustness
varies depending on the strength and the number of the
synaptic connections. We also demonstrate that homoge-
neous networks are more tolerant than heterogeneous net-
works from the dynamical robustness viewpoint. This case
study would contribute to understanding robustness of bio-
logical networks.

1. Introduction

Robustness is a fundamental feature of biological sys-
tems. For instance, homeostasis is the property of a system
that regulates its internal environment and tends to main-
tain stable, constant conditions. Immunity is also a mech-
anism through which living things are able to be resistant
to viruses and pathogens from the environment outside the
body. However, some perturbations to biological systems
often cause a fatal damage to them. For instance, brain in-
farct can result from a series of biochemical reactions initi-
ated by ischemia (inadequate blood supply) in a local part.
Therefore, biological systems are robust against some per-
turbations but vulnerable to other ones. A mathematical
framework to understand this “robust but fragile” property
in biological systems is still not fully established [1, 2].

Biological systems function in networks of diverse bio-
logical components, which are interacting with each other
in various scales. Recent developments of imaging modali-
ties and electrical devices have enabled to reveal connectiv-
ity properties in biological networks, including metabolic
[3], protein [4], cellular [5], and brain networks [6]. The
structures of these biological networks are quite com-
plex and heterogeneous. Accordingly, complex topologi-
cal structures of biological systems are necessary to be in-
corporated in mathematical models for understanding the
robustness of biological systems [7].

Although the robustness of network structure has at-
tracted much attention in complex network theory [8], less
attention has been paid to the robustness of dynamics on
networks. For many real networks consisting of compo-

nents having intrinsic dynamics, it is reasonable to take into
account both complex structure and dynamics. In partic-
ular, dynamical activities are responsible for information
transmission and other normal functions in biological net-
works. Recently we have studied the robustness of dynam-
ical activities in oscillator networks with complex topolo-
gies [9] by extending the framework which was first pro-
posed for globally coupled oscillator networks [10] and
subsequently applied to other networks [11, 12]. This study
has shown that scale-free networks can be extremely fragile
to inactivation of low-degree oscillators if there are dynam-
ical processes where normal components compensate for
failure components. Because it is widely recognized that
scale-free networks are highly fragile to removal of high-
degree nodes (hubs), our result on the property on dynam-
ical robustness in oscillator networks is in strong contrast
to the property on structural robustness. It is suggested that
the property of dynamical robustness can depend on the
type of dynamics of individual components and the inter-
action scheme between components.

In neuronal networks, neurons are coupled via synapses.
Our aim is to understand the effect of synaptic connec-
tions on the robustness of firing activities in neuronal net-
works by using a mathematical model. The Morris-Lecar
neuron model [13] is used as the components of neuronal
networks. We assume that some neurons in the network
are inactivated and become unable to generate a spike by
themselves. As the ratiop of the inactivated neurons in-
creases, the neuronal firing activities are gradually weak-
ened. Whenp surpasses a critical valuepc, the firing ac-
tivity in the whole network is lost due to a phase transi-
tion phenomenon. Therefore, a larger value ofpc implies
a more dynamically robust network. By using this robust-
ness measure, we investigate the dynamical robustness in
synaptically coupled neuronal networks.

2. Methods

2.1. Neuronal network model

Spiking neuron models can be classified into two types
according to the bifurcation mechanism of the onset of
spike firing with an increase of the external input current:
class I excitability (saddle-node bifurcation on invariant
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circle bifurcation) and class II excitability (subcritical Hopf
bifurcation) [14]. The Morris-Lecar neuron model [13]
is one of the favorable conductance-based spiking neuron
model widely used in computational neuroscience, which
can reproduce both types of bifurcations depending on the
parameter values [15]. The model that we study is a net-
work of Morris-Lecar neuron models coupled via synapses.
The model equations are described as follows [16]:

CM
dVi

dt
= Iext

i − I ion
i − I syn

i , (1)

dWi

dt
= (W∞(Vi) −Wi)/τW, (2)

whereVi andWi represent the membrane potential and the
recovery variable (the fraction of open potassium channels)
of theith neuron (i = 1, . . . ,N), respectively.CM represents
the membrane capacitance per unit area,τW is a parame-
ter controlling the time scale of the firing dynamics (or the
inverse of the decay rate ofWi), Iext

i is the external input
current, I sym

i is the synaptic current, andI ion
i is the ionic

current. The ionic current is given by

I ion
i =gL(Vi −VL) + gCaM∞(Vi)(Vi −VCa) + gKWi(Vi −VK),

(3)

wheregL , gCa, andgK represent the conductances of the
calcium, potassium, and leak currents, respectively.VL ,
VCa, andVK denote the resting potentials for the calcium,
potassium, and leak currents, respectively. The calcium
current is assumed to be in equilibrium with the following
activation curve:

M∞(V) = (1+ tanh((V − V1)/V2))/2, (4)

whereV1 is the midpoint potential at which the calcium
current is half-activated andV2 corresponds to the steep-
ness of the activation voltage dependence. The potassium
activation is given by a voltage-dependent function as fol-
lows:

W∞(V) = (1+ tanh((V − V3)/V4))/2, (5)

whereV3 is the midpoint potential at which the potassium
current is half-activated andV4 corresponds to the slope
of the potassium activation. The time constantτW is also
assumed to be voltage-dependent as follows:

τW = 1/(ϕ cosh((V − V3)/2V4)). (6)

The single Morris-Lecar neuron which is not synapti-
cally connected to other neurons (i.e.I syn

i = 0) exhibits
an onset of firing activity as the external input currentIext

i
increases. The normal neuron which is responsible for sig-
nal transmission shows spiking behavior as demonstrated
in the upper panel of Fig. 1. The stationary behavior corre-
sponds to a limit cycle oscillation. Suppose that the neuron
has inactivated due to failure or deterioration. Then, the fir-
ing activity of the neuron is not observed as shown in the
lower panel of Fig. 1. The inactivated neuron is excitable:
it can generate spikes when an input current is injected.
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Figure 1: Behavior of the single Morris-Lecar neuron
model. The left panels show the state space and the right
panels show the time series of the membrane potentialV.
The normal active neuron (upper) exhibits repetitive spike
firings corresponding to a limit cycle, whereas the inacti-
vated neuron (lower) is excitable but not self-oscillatory.
These two regimes are separated by a saddle-node on in-
variant circle bifurcation.

2.2. Synaptic connections

In a network of these normal and inactivated neurons, the
inactivated neurons can generate spikes due to the synaptic
inputs injected from neighboring normal neurons. Neurons
typically have two types of synapses: electrical and chem-
ical synapses. In electrical gap-junctions, the sypaptic cur-
rent is proportional to the membrane potential difference
between a neuron and its neighbors as follows:

I syn
i =

∑
j∈Ni

ggap
i j (Vi − V j), (7)

whereNi stands for the set of the neighboring neurons cou-
pled with neuroni andggap

i j represents the conductance of
the synaptic channel.

2.3. Measure of network dynamics

To evaluate firing activities in the neuronal networks, we
define the order parameter as follows:

R=
√
⟨(xc − ⟨xc⟩)2⟩, (8)

wherexc = N−1∑N
j=1(V j(t),Wj(t)) is the centroid and the

brackets mean a long time average. The firing frequency
is also related to the order parameter. A transition from a
dynamic state to a quiescent state can be characterized by
a change ofR from positive to 0.

2.4. Simulation setting

We consider a network ofN Morris-Lecar neurons cou-
pled via gap-junctions. The proportion of the inactivated
neurons is given byp and that of the normal neurons by
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Table 1: Parameter values of the Morris-Lecar neurons [15]
Parameter Value
CM 20µF/cm2

gK 8 mS/cm2

gCa 2 mS/cm2

gL 2 mS/cm2

VK -80mV
VCa 120mV
VL -60mV
V1 -1.2mV
V2 18mV
ϕ 1/15 s−1

V3 12 mV
V4 17.4 mV

1 − p. As p increases, the order parameter decreases with
lowering of the level of network dynamics. In numeri-
cal simulations, if the order parameter becomes smaller
than 10−6, the network state was regarded to be quies-
cent. The parameter values are set as shown in Table. 1
unless otherwise noted. The single Morris-Lecar neuron
exhibits class-I excitability for these parameter conditions.
The strength of the gap-junctions is assumed to be homo-
geneous:ggap

i j = ggap. To examine the effect of the network
topology on the dynamical robustness, we compare dynam-
ical robustness in homogeneous random [17] and heteroge-
neous scale-free networks [18] with the mean degree fixed.
The mean number of gap-junctions for each neuron is rep-
resented byKgap.

3. Results

We numerically study dynamical robustness in neuronal
networks coupled via electrical gap-junctions. We assume
that the neurons in the network are randomly inactivated
with ratio p. Namely, the number of normal active neurons
is (1− p)N and that of inactivated neurons ispN. When
there is no inactive neurons (i.e.p = 0), all the neurons
exhibit synchronized spiking behavior. On the other hand,
when all the neurons are inactivated (i.e.p = 1), the dy-
namic behavior in the whole network vanishes. Hence, at
a critical value ofp = pc, a phase transition between the
two different regimes must take place. This critical value
can be a measure of dynamical robustness of the network,
because a larger value ofpc means that the network is more
tolerant to the components failure.

Figure 2 shows the critical value against the strength of
the gap-junction in random networks with three different
values of the mean degree. As the connection strength in-
creases, the network becomes less robust because of a de-
crease in the value ofpc. For a sufficiently large connec-
tion strength, the value ofpc converges to a certain value
independently of the mean degree. The result also shows
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Figure 2: Critical ratiopc vs the strengthggap of the electri-
cal synapses in random networks withN = 200. For each
parameter we conducted 10 trials with different network
configurations and initial conditions.
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Figure 3: Critical ratiopc vs the strengthggap of the elec-
trical synapses in scale-free networks withN = 200. For
each parameter we conducted 10 trials with different net-
work configurations and initial conditions.
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Figure 4: Effet of network topology on the critical ratiopc.
The pc value is larger for random networks than for scale-
free networks. Both are the networks withN = 200 and
Kgap = 6.
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that the network with denser connections is less robust in
terms of dynamics. Similar tendency can be confirmed in
the scale-free networks as shown in Fig. 3. However, the
decay rate of the value ofpc seems to depend on the net-
work topology.

Figure 4 compares the curves ofpc in random and scale-
free networks with the same mean degreeKgap = 6. It is
clearly observed that the value ofpc is larger in random
networks than in scale-free networks. In other words, the
random networks are more tolerant to random inactivation
of neurons than the scale-free networks in terms of dynami-
cal robustness. This is opposite to the well-known property
that scale-free networks are highly robust to random failure
of components compared with random networks in terms of
structural robustness [19].

4. Summary

Robustness of dynamic activity in synaptically coupled
neuronal networks has been studied in terms of phase tran-
sition phenomena. We have shown that an increase in
the connection strength and the number of the electrical
synapses makes the network dynamics less robust. The
comparison between random and scale-free networks with
the same mean degree has revealed that, surprisingly, the
firing dynamics in homogeneous networks is more tolerant
to the random inactivation of the neurons than that in het-
erogeneous networks. Theoretical verification of this re-
markable property is an issue to be done. A future work is
to examine the role of chemical synapses in the dynamical
robustness of neuronal networks.
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[17] P. Erd̋os and A. Ŕenyi, “On the evolution of random
graphs,”Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, vol. 5, 17–61,
1960.

[18] A.-L. Barab́asi and R. Albert. “Emergence of scal-
ing in random networks,”Science, vol. 286, 509–512,
1999.

[19] R. Albert, H. Jeong, and A.-L. Barabási, “Error and
attack tolerance of complex networks,”Nature, vol.
406, 378-382, 2000.

- 597 -




