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Abstract—Tolerance of biological networks against lo-nents having intrinsic dynamics, itis reasonable to take into
cal perturbations is still not completely understood, beaccount both complex structure and dynamics. In partic-
cause both structure and dynamics are often complex idar, dynamical activities are responsible for information
such networks. Here we study the role of synaptic cortransmission and other normal functions in biological net-
nections in robustness of dynamic activities in neuronaliorks. Recently we have studied the robustness of dynam-
network models. We show that the dynamical robustnessal activities in oscillator networks with complex topolo-
varies depending on the strength and the number of tlgges [9] by extending the framework which was first pro-
synaptic connections. We also demonstrate that homogeased for globally coupled oscillator networks [10] and
neous networks are more tolerant than heterogeneous natbhsequently applied to other networks [11, 12]. This study
works from the dynamical robustness viewpoint. This caseas shown that scale-free networks can be extremely fragile
study would contribute to understanding robustness of bide inactivation of low-degree oscillators if there are dynam-

logical networks. ical processes where normal components compensate for
failure components. Because it is widely recognized that
1. Introduction scale-free networks are highly fragile to removal of high-

degree nodes (hubs), our result on the property on dynam-

Robustness is a fundamental feature of biological syssal robustness in oscillator networks is in strong contrast
tems. For instance, homeostasis is the property of a systéathe property on structural robustness. Itis suggested that
that regulates its internal environment and tends to maithe property of dynamical robustness can depend on the
tain stable, constant conditions. Immunity is also a mechype of dynamics of individual components and the inter-
anism through which living things are able to be resistariction scheme between components.
to viruses and pathogens from the environment outside theln neuronal networks, neurons are coupled via synapses.
body. However, some perturbations to biological system@ur aim is to understand thefect of synaptic connec-
often cause a fatal damage to them. For instance, brain itiens on the robustness of firing activities in neuronal net-
farct can result from a series of biochemical reactions initiworks by using a mathematical model. The Morris-Lecar
ated by ischemia (inadequate blood supply) in a local pameuron model [13] is used as the components of neuronal
Therefore, biological systems are robust against some p&etworks. We assume that some neurons in the network
turbations but vulnerable to other ones. A mathematicalre inactivated and become unable to generate a spike by
framework to understand this “robust but fragile” propertythemselves. As the ratip of the inactivated neurons in-
in biological systems is still not fully established [1, 2].  creases, the neuronal firing activities are gradually weak-

Biological systems function in networks of diverse bio-ened. Whem surpasses a critical valyg, the firing ac-
logical components, which are interacting with each othdivity in the whole network is lost due to a phase transi-
in various scales. Recent developments of imaging modation phenomenon. Therefore, a larger valugpgimplies
ties and electrical devices have enabled to reveal connectarimore dynamically robust network. By using this robust-
ity properties in biological networks, including metabolicness measure, we investigate the dynamical robustness in
[3], protein [4], cellular [5], and brain networks [6]. The synaptically coupled neuronal networks.
structures of these biological networks are quite com-
plex and heterogeneous. Accordingly, complex topologié Method
cal structures of biological systems are necessary to be in- ethods
corporated in mathematical models for understanding the, Neuronal network model
robustness of biological systems [7].

Although the robustness of network structure has at- Spiking neuron models can be classified into two types
tracted much attention in complex network theory [8], lesaccording to the bifurcation mechanism of the onset of
attention has been paid to the robustness of dynamics spike firing with an increase of the external input current:
networks. For many real networks consisting of compoelass | excitability (saddle-node bifurcation on invariant
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circle bifurcation) and class Il excitability (subcritical Hopf | active
bifurcation) [14]. The Morris-Lecar neuron model [13] s
is one of the favorable conductance-based spiking neurem-:
model widely used in computational neuroscience, which
can reproduce both types of bifurcations depending on the;o(_’1

parameter values [15]. The model that we study is a net- ° v~ © 0 %0 100 0 20 20 00 w0
work of Morris-Lecar neuron models coupled via synapses. °° 40 hactive
The model equations are described as follows [16]: - 2
dVi ext ion syn =02 / >'1g
CM E = Ii - Ii - Ii s (1) 0-01 jg
-40
% - (Woo(vl) _ \Ni)/TW’ (2) '0',150 v 0 40 %0 0 50 100 150 2:)0 250 300 350 400

whereV; andW, represent the membrane potential and thE
recovery variable (the fraction of open potassium channelni

of theith neuroni = 1,..., N), respectivelyCy represents . . i

the membrane capacitance per unit arg@js a parame- panels show thg time series of the mgmbrane pqte‘ﬂtlgl

ter controlling the time scale of the firing dynamics (or theTThe normal acuvzlneuron Egp_per) ?Xh'bgs repetﬁve_ sp|k_e

inverse of the decay rate &%), 1®'is the external input Inngs correspoln ‘N9 Fo a |m|t (I:yc €, W ereallfs t gl;nactl-

current, |¥™ is the synaptic current, ankP" is the ionic vated neuron (_ower) is excitable but not self-osci atory.

current. The ionic current is given by Thgse tvyo regimes are separated by a saddle-node on in-
variant circle bifurcation.

|iion = gL(Vi —VL) + gcaMoo(Vi)(Vi —VCa) + gKVVI(Vl _VK)’

gure 1: Behavior of the single Morris-Lecar neuron
odel. The left panels show the state space and the right

3)
whereg., gca, andgg represent the conductances of the2'2' Synaptic connections
calcium, potassium, and leak currents, respectivély, In a network of these normal and inactivated neurons, the

Vca @andVi denote the resting potentials for the calciuminactivated neurons can generate spikes due to the synaptic
potassium, and leak currents, respectively. The calciufputs injected from neighboring normal neurons. Neurons
current is assumed to be in equilibrium with the followingtypically have two types of synapses: electrical and chem-
activation curve: ical synapses. In electrical gap-junctions, the sypaptic cur-
rent is proportional to the membrane potentidfatience
Mo(V) = (1+1anh(tV =V1)/V2))/2, “) bet\NeeE aeleuron and its neighbors asﬁ‘ollows:
whereV; is the midpoint potential at which the calcium

current is half-activated and, corresponds to the steep- 1" = Z g (Vi = V), (7
ness of the activation voltage dependence. The potassium jeN;
activation is given by a voltage-dependent function as fol-

whereN; stands for the set of the neighboring neurons cou-
pled with neurori andg;*” represents the conductance of
WL (V) = (@@+tanh(V - V3)/Va))/2, (5) the synaptic channel.

lows:

wherevg_ is the mi(_jpoint potential at which the potassiuny, 3 Measure of network dynamics
current is half-activated and, corresponds to the slope
of the potassium activation. The time constagtis also To evaluate firing activities in the neuronal networks, we

assumed to be voltage-dependent as follows: define the order parameter as follows:
tw = 1/(¢cosh(l{ - Vz)/2Vs)). (6) R= v{(Xc = (Xc)?), 8

The single Morris-Lecar neuron which is not synapti- ne1wN g o .
cally connected to other neurons (i.6>" = 0) exhibits wherexe = N%2,j_4(V;j(0), Wj(1)) is the centroid and the

an onset of firing activity as the external input currq‘ﬁt brackets mean a long time average. The firing frequency

. S : .Is also related to the order parameter. A transition from a
increases. The normal neuron which is responsible for sig-

nal transmission shows spiking behavior as demonstrated 1o e state to a quiescent state can be characterized by

in the upper panel of Fig. 1. The stationary behavior corré change oRfrom positive to 0.

sponds to a limit cycle oscillation. Suppose that the neurag
has inactivated due to failure or deterioration. Then, the fir-"
ing activity of the neuron is not observed as shown in the We consider a network dfl Morris-Lecar neurons cou-
lower panel of Fig. 1. The inactivated neuron is excitablepled via gap-junctions. The proportion of the inactivated
it can generate spikes when an input current is injected. neurons is given by and that of the normal neurons by

4. Simulation setting
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Table 1: Parameter values of the Morris-Lecar neurons [15]
Parameter Value
Cwm 20 uF/cn? o8 W %'
ok 8 mYcn? o6 |
dca 2 mSen? o
o 2 mSen? Tl 4
Vk -80mv
Vea 120mV onl
\A -60mvVv ' tgapz % —e—
Vi -1.2mV o Koap=10 —e— ‘ ‘ ‘ ‘ ‘
\A 18mVv 0 02 04 06 08 1 12 14 16 18
[0 1/15s? Ygap
Vs 12 mV
Va 17.4mv Figure 2: Critical ratiop. vs the strengtlygap of the electri-

cal synapses in random networks with= 200. For each
parameter we conducted 10 trials withffdrent network

. configurations and initial conditions.
1 - p. As pincreases, the order parameter decreases Wl(fh 9

lowering of the level of network dynamics. In numeri-

cal simulations, if the order parameter becomes smaller
than 10°, the network state was regarded to be quies-
cent. The parameter values are set as shown in Table. 1
unless otherwise noted. The single Morris-Lecar neuron
exhibits class-I excitability for these parameter conditions.
The strength of the gap-junctions is assumed to be homo- ©
geneousg;"” = ggap. TO examine theféect of the network
topology on the dynamical robustness, we compare dynam-
ical robustness in homogeneous random [17] and heteroge- o2y Kgap= 2 ——

neous scale-free networks [18] with the mean degree fixed. K210 e
The mean number of gap-junctions for each neuron is rep- %0 02 04 08 08 1 12 14 15 18
resented bKgap. 9gap

Figure 3: Critical ratiop. vs the strengtyy,, of the elec-
trical synapses in scale-free networks wilh= 200. For

We numerically study dynamical robustness in neuron2ch parameter we conducted 10 trials witfiedent net-
networks coupled via electrical gap-junctions. We assuntérk configurations and initial conditions.
that the neurons in the network are randomly inactivated
with ratio p. Namely, the number of normal active neurons
is (1 - p)N and that of inactivated neurons jgN. When
there is no inactive neurons (i.¢o = 0), all the neurons
exhibit synchronized spiking behavior. On the other hand,
when all the neurons are inactivated (ijge.= 1), the dy-
namic behavior in the whole network vanishes. Hence, at <
a critical value ofp = p¢, a phase transition between the 04r
two different regimes must take place. This critical value
can be a measure of dynamical robustness of the network, 92|

3. Results

1

because a larger value pf means that the network is more Random topology —a—
K 0 ‘Scale-f‘ree topplogy s ‘ ‘ ‘
tole_rant to the componer_n.s failure. . 0 o2 o4 08 o8 1 12 124 18 1s
Figure 2 shows the critical value against the strength of Ygap

the gap-junction in random networks with thredfelient

values of the mean degree. As the connection strength in- ) . .

creases, the network becomes less robust because of aEg_u rea: Effef[ of network topology on the critical ratja.

crease in the value gf.. For a stficiently large connec e pc value is larger for random networks than for scale-
(o3} - _

tion strength, the value gf; converges to a certain value free r_leftsworks. Both are the networks with = 200 and

independently of the mean degree. The result also show§2P ~ ™
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that the network with denser connections is less robust [6] E. Bullmore and O. Sporns, “Complex brain networks:

terms of dynamics. Similar tendency can be confirmed in graph theoretical analysis of structural and functional

the scale-free networks as shown in Fig. 3. However, the systems,Nat. Rev. Neurosgivol. 10, 186-198, 2009.

decay rate of the value gf. seems to depend on the net- . L )

work topology. [7] A.-L. Baratx_a3| and Z. N., Oltvai, .Network B|9Iogy: )
Figure 4 compares the curvespfin random and scale- Understanding the Cell's Functional Organization,

free networks with the same mean degkeg, = 6. It is Nat. Rev. Genetvol. 5, 101-113, 2004.

clearly observed that the value pf is larger in random 8] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and

networks than in scale-free networks. In other words, the” p . Hwang, “Complex networks: structure and dy-

random networks are more tolerant to random inactivation namics,”Phys. Rep.vol. 424, 175-308, 2006.

of neurons than the scale-free networks in terms of dynami-

cal robustness. This is opposite to the well-known propert®] G. Tanaka, K. Morino, and K. Aihara “Dynamical ro-

that scale-free networks are highly robust to random failure bustness in complex networks: the crucial role of low-

of components compared with random networks interms of degree nodesS3ci. Rep.vol. 2, 223, 2012.

structural robustness [19].
[19] [10] H. Daido and K. Nakanishi, “Aging transition

and universal scaling in oscillator networks,”
4. Summary Phys. Rev. Lettvol. 93, 104101, 2004.

Robustness of dynamic activity in synaptically coupled11] D. Pad and E. Montbi®, “Universal behavior in pop-
neuronal networks has been studied in terms of phase tran- ulations composed of excitable and self-oscillatory el-
sition phenomena. We have shown that an increase in ements,’Phys. Rev. Evol. 73, 055202(R), 2006.
the connection strength and the number of the electricgl _ _ .
synapses makes the network dynamics less robust. T ] K. Morlno, G.-Tanaka, and K. Aihara, "Robustness of
comparison between random and scale-free networks with Multilayer oscillator networks,Phys. Rev. Evol. 83,
the same mean degree has revealed that, surprisingly, the 056208, 2011.
firing dynamics in homogeneous networks is more tqlerarFi3] C. Morris and H. Lecar, “Voltage oscillations in the
to the random inactivation of thg neurons thgn that in het- "parnacle giant muscle fibeBiophys. J.vol. 35, 193-
erogeneous networks. Theoretical verification of this re- 213, 1981.
markable property is an issue to be done. A future work is
to examine the role of chemical synapses in the dynamicHl4] J. Rinzel and B. Ermentrout, “Analysis of neural ex-
robustness of neuronal networks. citability and oscillations,” 251-292 in C. Koch and

I. Segev (eds.) Methods ofo Neuronal Modeling, MIT

Acknowledgments Press, Cambridge, 1998.

) _ ~ [15] K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara,
This work was partially supported by MEXT Grant-in- 544 H, Kawakami, “Bifurcations in Morris-Lecar neu-
Aid for Young Scientists (B) 24700222 and by the Aihara 5 model,"Neurocomp.vol. 69, 293-316, 2006.

Project, the FIRST program from JSPS, initiated by CSTP.

[16] P.Balenzuela and J. G&®jalvo, “Role of chemical
synapses in coupled neurons with noigdiys. Rev. E
vol. 72, 021901, 2005.

[1] H. Kitano, “Systems biology: a brief overview3ci-  [17] P, Erchs and A. Rnyi, “On the evolution of random

ence vol. 295, 1662-1664, 2002. graphs,”Publications of the Mathematical Institute of
the Hungarian Academy of Sciencesl. 5, 17-61,
1960.

References

[2] H. Kitano, “Biological robustness,Nat. Rev. Genet.
vol. 5, 826-837, 2004.
[18] A.-L. Baratasi and R. Albert. “Emergence of scal-

[3] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, ing in random networks,Sciencevol. 286, 509-512,
and A.-L. Baralsi, “The large-scale organization of 1999.

metabolic networks,Nature vol. 407, 651-654, 2000.
[19] R. Albert, H. Jeong, and A.-L. Barabi, “Error and

[4] H. Jeong, S. Mason, A.-L. Barabi, and Z. N. Oltvai, attack tolerance of complex networkd\ature vol.
“Lethality and centrality in protein networksNature 406, 378-382, 2000.
vol. 411, 41-42, 2001.

[5] R. Albert, “Scale-free networks in cell biology,”
J. Cell Sci, vol. 118, 4947-4957, 2005.

- 597 -





