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Abstract—The “tug-of-war (TOW) model” is a unique
parallel search algorithm for solving the multi-armed ban-
dit problem (BP), which was inspired by the photoavoid-
ance behavior of a single-celled amoeboid organism, the
true slime mold Physarum polycephalum [1, 2, 3, 4, 5, 6].
“The cognitive medium access”, which refers to multiuser
channel allocations in cognitive radio, can be interpreted
as “competitive multi-armed bandit problem (CBP) [14].”
Unlike the normal BP, the reward (free channel) probabil-
ity of a channel selected by more than one user is evenly
split between selecting users. In this study, we propose
the “solid TOW (STOW) model” for the CBP toward de-
veloping cognitive medium access protocols in uncertain
environments. The aim of this study is to explore how can
the users achieve the “social maximum”, which is the most
desirable state to obtain the maximum total score, in a de-
centralized manner. We show that the performance of the
STOW model is higher than that of the well-known UCB1-
tuned algorithm in many cases.

1. Introduction

Recently, various biologically-inspired computing algo-
rithms, such as ant colony optimization [7], bee colony op-
timization [8], and so on, have been studied actively. In
this study, we were inspired by a unicellular amoeboid or-
ganism, the plasmodium of the true slime mold Physarum
polycephalum, that exhibits rich spatiotemporal oscillatory
behavior and sophisticated computational capabilities [9].
We are interested in how the volume conservation law af-
fects the information processing capabilities of the amoeba,
and formulated the tug-of-war (TOW) model [1, 2, 3, 10].

In the TOW model, a number of branches of the amoeba
act as search agents to collect information on light stim-
uli while conserving the total sum of their resources. The
resource conservation law produces nonlocally-correlated
search movements of the branches. We showed that the
nonlocal correlation can be advantageous to manage the
“exploration–exploitation dilemma”, which is the trade-
off between the accuracy and speed in solving the “multi-
armed bandit problem (BP)” . In this study, we concen-
trate on the minimal instances of the BP, i.e., two-armed
cases, stated as follows. Consider two slot machines. Both

machines have individual reward probabilities PA and PB.
At each trial, a player selects one of machines and obtains
some reward, for example, a coin, with the corresponding
probability. The player wants to maximize the total reward
sum obtained after a certain number of selections. How-
ever, it is supposed that the player does not know these
probabilities. The problem is to determine the optimal
strategy for selecting the machine which yields maximum
rewards by referring to past experiences.

In our previous studies [1, 2, 3, 4, 5, 6], we showed that
the TOW model is more efficient than other well-known
algorithms such as the modified ε-greedy algorithm and
modified softmax algorithm, and comparable to the “up-
per confidence bound1-tuned (UCB1T) algorithm” which
is known as the best algorithm among non-parameter al-
gorithms [11]. The algorithms for solving the problem
are applicable to various fields, such as the Monte-Carlo
tree search which is used in algorithms for the “game of
GO” [12, 13], the cognitive radio [14, 15], web advertis-
ing, and so on.

In this study, we present our algorithm that is applied
to the cognitive radio, and make comparisons on the per-
formances of our TOW model and the UCB1T algorithm.
Recently, the “cognitive medium access” problem is one
of the hottest topic in the field of mobile communica-
tions [14, 15]. The underlying idea is to allow unlicensed
users (i.e., cognitive users) to access the available spectrum
when the licensed users (i.e., primary users) are not active.
The “cognitive medium access” is a new medium access
paradigm in which the cognitive users should not interfere
with the licenced users.

Figure 1 shows the channel model proposed by Lai et
al. [14, 15]. There is a primary network consisting of N
channels, each with bandwidth B. The users in the primary
network are operated in a synchronous time-slotted fash-
ion. It is assumed that at each time slot, channel i is free
with probability Pi. The cognitive users do not know Pi a
priori. At each time slot, the cognitive users attempt to ex-
ploit the availability of channels in the primary network by
sensing the activity in this channel model. In this setting,
a single cognitive user can access only a single channel at
any given time. The problem is to derive an optimal ac-
cessing strategy for choosing channels that maximizes the
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Figure 1: Channel model.

expected throughput obtained by the cognitive user. This
situation can be interpreted as the multiuser competitive
bandit problem (CBP).

We consider the minimum CBP, i.e., 2 cognitive (unli-
cenced) users (1 and 2) and 2 channels (A and B). Each
channel is not occupied by primary (licenced) users with
the probability Pi. In the BP context, we assume that the
user accessing a free channel can get some reward, for ex-
ample a coin, with the probability Pi. Table 1 shows the
pay-off matrix for user 1 and 2. If two cognitive users se-

Table 1: Pay-off matrix for user 1 (user 2)

user 2: A user 2: B
user 1: A PA/2 (PA/2) PA (PB)
user 1: B PB (PA) PB/2 (PB/2)

lect the same channel, i.e. the collision occurs, the reward
is evenly split between selecting users.

In order to develop a unified framework for the design
of efficient, and low complexity, cognitive medium access
protocols, we have to seek an algorithm which can obtain
the maximum total rewards (scores) in this context. We re-
port the minimum results for the performance of the TOW
model and the UCB1T algorithm as a candidate for the cog-
nitive medium access in this study.

2. Solid TOW (STOW) Model

Many algorithms for the BP estimate the reward prob-
ability of each machine. In most cases, this “estimate” is
updated only when the corresponding machine is selected.
In contrast, the TOW model uses a unique learning method
which is equivalent to that both estimates are updated si-
multaneously [5, 6]. The TOW model can imitate the sys-
tem that determines its next moves at time t+ 1 in referring
to the estimate of each machine even if it was not selected
at time t, as if the two machines were selected simultane-
ously at time t. This unique feature is one of origins of the
TOW’s high performance.

In the previous study [6], we proposed the “solid” TOW

Figure 2: Solid TOW model.

(STOW) model which directly uses the advantage of the
learning rule. Consider a rigid body like an iron bar, as
shown in Fig. 2. Here, variable Xk corresponds to the
displacement of branch k from an initial position, where
k ∈ {A, B}. If Xk is greater than 0, we consider that the
body selects machine k. In the TOW model, the BP is rep-
resented in its inverse form, as we introduce “punishment”
instead of “reward”. That is, when machine k is played, the
player is “punished” with a probability 1 − Pk.

We used the following estimate Qk (k ∈ {A, B}):

Qk(t) = (Nk − Lk) −
t∑
τ=0

ωe(τ)lk(τ), (1)

ωe(τ) =
2

z(τ)
− 1, (2)

z(τ) =
L1(τ)
N1(τ)

+
L2(τ)
N2(τ)

. (3)

Here, Nk is the number of playing machine k, and Lk is
the number of light stimuli (i.e., punishments) in k, where
lk(t) = 1 if light stimulus is applied at time t, otherwise 0.

The displacement Xk (k ∈ {A, B}) is determined by the
following difference equations:

XA(t) = X0 + QA(t) − QB(t) − δ, (4)
XB(t) = X0 + QB(t) − QA(t) + δ, (5)

δ =
a
|d| sin(πt + π/2), (6)

d =
NA − LA

NA
− NB − LB

NB
. (7)

The body oscillates autonomously according to Eq. (6).
The two parameters X0 and a are fixed as X0 = 0 and
a = 0.35 in this study. Consequently, +1 is added to Xk

if a reward (no light stimulus) occurs, or −ωe(t) is added to
Xk if light stimulus is applied in each selected side.

3. Results: Performance Evaluation

3.1. easy problem instances

First, we consider problem instances such that PA < PB

and PA > PB/2, that are, (PA, PB) = (0.2, 0.3), (0.3, 0.4),
(0.4, 0.5), (0.5, 0.6), (0.6, 0.7), (0.7, 0.8), and (0.8, 0.9).
When a user plays a machine which is different from the
one that another user plays, we call this state “segregation”,
i.e., (user 1, user 2) = (A, B) or (B, A). The two users in the
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Figure 3: User scores of the STOW model and the UCB1T
algorithm. An open circle denotes scores of user 1 (hori-
zontal axis) and 2 (vertical axis) until 1000 selections for
a sample. a) Scores of the STOW model for PA=0.3 and
PB=0.4. b) Scores of the STOW model for PA=0.7 and
PB=0.8. c) Scores of the UCB1T algorithm for PA=0.3 and
PB=0.4. d) Scores of the UCB1T algorithm for PA=0.7 and
PB=0.8.

segregation state will lose their rewards if they change their
machines to play. Thus, the segregation state can be main-
tained stably as an “equilibrium”. A state which gives the
maximal total score, i.e., the maximal amount of rewards
obtained by the two users, is called “social maximum” in
the context of algorithmic game theory [16]. Here we de-
signed each of the problem instances so that the segregation
state corresponds to the social maximum.

The performance of each algorithm is evaluated in terms
of the “score”; the accumulated amount of rewards that
each user obtained over N plays. Figure 3 shows user
scores of the STOW model (a) and b)) and the UCB1T al-
gorithm (c) and d)) for PA=0.3 and PB=0.4, and PA=0.7
and PB=0.8, respectively. There are 1000 open circles for
each figure because we used 1000 samples. An open circle
denotes scores of user 1 (horizontal axis) and 2 (vertical
axis) until 1000 selections for a sample.

There are two clusters of points in Fig. 3c and d. These
clusters give the social maximum as they correspond to the
segregation equilibrium such that (user 1, user 2) = (A, B)
or (B, A). For PA=0.3 and PB=0.4 case (Fig. 3c), (user 1
score, user 2 score) = (300, 400) or (400, 300). For PA=0.7
and PB=0.8 case (Fig. 3d),(user 1 score, user 2 score) =
(700, 800) or (800, 700).

On the other hand, there are three or four clusters in the
STOW model. Larger two clusters correspond to the seg-
regation equilibrium, and other smaller clusters correspond
to the collision points due to some estimate-errors. The
STOW model always estimates the PA + PB by its own in-
ternal variables. Although this estimate generates the high
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Figure 4: Average total scores of the STOW model (solid
line) and the UCB1T algorithm (dashed line) for a) PA=0.3
and PB=0.4, and b) PA=0.7 and PB=0.8, respectively.

performance of the STOW model, estimate-errors occur in
a small number of samples.

Despite the estimate-errors in the STOW model, total
scores are comparable to the UCB1T algorithm as shown in
Fig. 4. For PA=0.3 and PB=0.4 case, the average total score
of the STOW model is higher than that of the UCB1T al-
gorithm, while the average total score of the STOW model
is lower than that of the UCB1T algorithm for PA=0.7 and
PB=0.8 case.

Figure 5a also shows that the average total scores of the
STOW model are comparable to those of the UCB1T al-
gorithm. However, analyzing the results more precisely,
we confirmed that the STOW is a superior algorithm than
the UCB1T as shown in Fig. 5b. The superiority is defines
as the difference of the average total scores between the
two algorithms, divided by the average total score of the
UCB1T algorithm. For (PA, PB) = (0.2, 0.3), (0.3, 0.4),
and (0.4, 0.5) cases, the average total score of the STOW
model is higher than that of the UCB1T algorithm. The
superiority values are order of 0.01. Although the average
total score of the STOW model is lower than that of the
UCB1T algorithm for remained four cases, the superiority
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Figure 5: a) Average total scores of the STOW model
(filled circle) and the UCB1T algorithm (open squre) un-
til 1000 selections for each problem. b) The superiority of
the STOW model compared to the UCB1T algorithm.
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values are order of −0.001 which is small enough to con-
sider as an accidental error. This means that the average
total score of the STOW model is almost the same as that
of the UCB1T algorithm for remained four cases.

3.2. hard problem instances

Secondly, we consider problem instances such that PA

< PB and PA < PB/2, that are, (PA, PB) = (0.1, 0.3), (0.2,
0.5), (0.3, 0.7), and (0.4, 0.9). In contrast to the first in-
stances in which the segregation states are equilibria and
social maxima, these second instances were designed so
that the segregation states are social maxima but cannot be
the equilibria. Instead, the Nash equilibrium (PB/2, PB/2)
exists. The second instances are harder than the first ones,
because the users need to avoid the Nash equilibrium to
obtain the maximal total score.

Figure 6 shows that the average total scores of the
STOW model (filled circle) and the UCB1T algorithm
(open squre) until 1000 selections for each hard problem
instance, and the superiority of the STOW model compared
to the UCB1T algorithm (open circle). In all cases, the av-
erage total score of the STOW model is higher than that of
the UCB1T algorithm except for (0.1, 0.3) case. 1 The
superiority values are −0.02924, 0.01419, 0.05284, and
0.07911, respectively. These results imply that our STOW
model is advantageous when used for harder problem in-
stances in which naive methods to reach an equilibrium
cannot achieve the maximal total score.

4. Conclusion

In this study, we presented a new form of the TOW
model, the STOW model, which is applied to the cogni-
tive radio. We showed that the performance of the STOW
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Figure 6: a) Average total scores of the STOW model
(filled circle) and the UCB1T algorithm (open squre) un-
til 1000 selections for each problem. b) The superiority of
the STOW model compared to the UCB1T algorithm (open
circle).

1The “plus” in figure 6b denotes the superiority with the another fixed
parameter a = 0.01.

model is better than that of the UCB1T algorithm, espe-
cially for the hard problem instances in which the users
should not be attracted to the Nash equilibria to achieve the
social maximum. What kind of direct user interaction is
needed for the realization of the social maximum? These
are open questions left for us to design efficient and low-
complexity cognitive medium access protocols in the fu-
ture.
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