
IEICE Proceeding Series

Amoeba-inspired SAT Solver

Masashi Aono, Song-Ju Kim, Liping Zhu, Makoto Naruse, Motoichi
Ohtsu, Hirokazu Hori, Masahiko Hara

Vol. 1 pp. 586-589
Publication Date: 2014/03/17
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers

Downloaded from www.proceeding.ieice.org

Amoeba-inspired SAT Solver

Masashi Aono†, Song-Ju Kim†, Liping Zhu‡, Makoto Naruse£,
Motoichi Ohtsu§, Hirokazu Hori¶, Masahiko Hara†

†Flucto-order Functions Research Team, RIKEN Advanced Science Institute,
‡Tokyo Tech-RIKEN International School, Tokyo Institute of Technology,

2-1, Hirosawa, Wako, Saitama 351-0198, Japan
£Photonic Network Research Institute, National Institute of Information and Communications Technology,

4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan
§Graduate School of Engineering, The University of Tokyo,

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
¶Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi,

Kofu 400-8511, Japan
Email: masashi.aono@riken.jp

Abstract—We propose a biologically-inspired comput-
ing algorithm called “AmoebaSAT” for solving an NP-
complete combinatorial optimization problem, the Boolean
satisfiability problem (SAT). AmoebaSAT is a hybrid of
two dynamics; chaotic oscillatory dynamics for exploring
the state space are combined with spatiotemporal control
dynamics for bouncing back logically-false state transi-
tions. For the former, we employ the logistic map as a unit
for generating chaotic fluctuation. The control principle of
the latter that we call “bounceback control” is designed to
stabilize a state only when it represents a solution, i.e., a
satisfiable assignment. We show that, for some benchmark
problem instances, AmoebaSAT finds a solution faster than
a well-known algorithm called “WalkSAT”, which is con-
sidered to be one of the fastest algorithms.

1. Introduction

There has been growing interest in biologically-inspired
algorithms for solving computationally demanding prob-
lems in a fashion similar to search dynamics of various
biological systems such as neural networks, evolutionary
processes, ants, and swarms [1]. AmoebaSAT extracts the
essence of spatiotemporal oscillatory dynamics of a single-
celled amoeboid organism, the true slime mold Physarum
polycephalum, which is capable of searching for a solu-
tion to some optimization problems [2]. When placed un-
der our previously studied spatiotemporal control which
applies aversive light stimuli locally and dynamically de-
pending on the shape of the organism, the organism ex-
hibits chaotic oscillatory dynamics and finds a solution to
the traveling salesman problem by changing its shape into
the optimal one for which the area of the body is maxi-
mized and the risk of being illuminated is minimized [3].
Inspired by this scheme, we define AmoebaSAT as a hybrid
of chaotic oscillatory dynamics and spatiotemporal control
dynamics.

The SAT is the problem of determining if a given
Boolean formula of N variables xi ∈ {0 (f alse), 1 (true)}
(i ∈ I = {1, 2, · · · ,N}) is “satisfiable”, i.e., there exists at
least one particular assignment of true values to the vari-
ables such that it makes the entire formula true. Many de-
cision problems and optimization problems can be trans-
formed into instances of the SAT. Thus, SAT solvers are
potentially applied to a wide range of practical purposes
such as software and hardware design, planning, constraint
optimization, and automatic inference.

The SAT is a basis of hard computational problems, as
it is the first problem shown to be NP-complete [4]. No
algorithm is known to solve the NP-complete problem in a
practically tractable time. Indeed, the number of possible
assignments 2N grows exponentially as a function of N.

A “conjunctive normal form (CNF)” of a Boolean for-
mula is the AND (∧) of a series of clauses, where each
clause is the OR (∨) of literals, and each literal is either a
variable xi or its negation ¬xi. The SAT is called “k-SAT”
when the formula is a CNF whose clause contains at most
k variables. 3-SAT is NP-complete whereas 2-SAT is not.

In this study, we formulate AmoebaSAT so that it can
be applied to k-SAT. For 20-variable 3-SAT benchmark in-
stances that are available online [6], we compare the per-
formance of AmoebaSAT with that of a widely-studied ran-
domized algorithm for k-SAT, called WalkSAT [5].

2. Models

2.1. AmoebaSAT

2.1.1. Assignment

Given an N-variable formula, AmoebaSAT is defined as
a discrete-time-state dynamical system consisting of 2 · N
units, each of which is labeled with (i, v) ∈ I × {0, 1} and
is an analogy of a pseudopod-like branch of the amoeboid
organism. Let Xi,v(t) be a displacement of resources in each

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 586 -

unit at time step t. If Xi,v > 0, we consider that unit (i, v) has
“abundant” resources and the system assigns the value v to
the ith variable, i.e., xi = v. Accordingly, a system state
X = (X1,0, X1,1, X2,0, X2,1, · · · , XN,0, XN,1) is mapped to an
assignment x = (x1, x2, · · · , xN) as follows:

xi =

0 (if Xi,0 > 0 and Xi,1 ≤ 0),
1 (if Xi,0 ≤ 0 and Xi,1 > 1),

undefined (otherwise).
(1)

Consider a four-variable 3-SAT instance, (x1 ∨ ¬x2) ∧
(¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ ¬x4) ∨
(¬x1∨ x4) in which a “solution” (x1, x2, x3, x4) = (1, 1, 1, 1)
uniquely exists. This formula is represented as a set
F = {{1,−2}, {−2, 3,−4}, {1, 3}, {2,−3}, {3,−4}, {−1, 4}} by
replacing xi and ¬xi in the formula with i and −i, respec-
tively.

2.1.2. Bounceback control dynamics

To make an entire formula true, every clause needs to
be true because all the clauses in a CNF are connected
with AND operators. Now, let us focus on a clause (x1 ∨
¬x2). To make this clause “true”, if x1 is f alse, then x2
should NOT be true. Therefore, we introduce the following
operation that we call “bounceback control dynamics”: If
X1,0(t) > 0, resource supply to unit (2, 1) is suppressed by
applying inhibitory stimulus at the next step t+1 as S 2,1(t+
1) = 1. Likewise, scanning all clauses, we determine if
the inhibitory stimuli are applied (S i,v = 1) or not (S i,v =

0). For a set-theoretical form F of the given formula, these
bounceback control dynamics are written as follows:

S i,v(t + 1) =

1 (if (B ∋ (P,Q) such that Q ∋ (i, v))

and (for all (j, u) ∈ P, X j,u(t) > 0)),
0 (otherwise),

(2)
where

B = Intra ∪ Inter ∪Contra (3)

is a set of bounceback rules whose element (P,Q) is taken
as “if all units in P are resource-abundant at t, then suppress
all units in Q at t + 1”.

Intra prohibits each variable xi to take two values 0 and
1 at a time, i.e., it maintains intra-variable consistency. For
each i ∈ I, we append the following element in Intra:

Intra ∋ ({(i, v)}, {(i, 1 − v)}). (4)

Inter defines inter-variable inhibitory coupling. For each
variable i ∈ I in each clause C ∈ F, we append the follow-
ing element in Inter:

Inter ∋
{

(P, {(i, 0)}) (if C ∋ i),
(P, {(i, 1)}) (if C ∋ −i), (5)

where, for each j , i, P includes the following element:

P ∋
{

(j, 0) (if C ∋ j),
(j, 1) (if C ∋ − j). (6)

Some rules in Inter may imply that neither 0 nor 1 can be
assigned to a variable. To avoid these contradictions, for
each i ∈ I, we build Contra by checking Inter as follows:

If (P, {(i, 0)}) ∈ Inter and (P′, {(i, 1)}) ∈ Inter,
then Contra ∋ (P ∪ P′, P ∪ P′). (7)

Intra, Inter, and Contra of F are shown in Table 1. These
rules are determined in a polynomial time poly(N · M),
where M is the number of clauses.

Table 1: Bounceback rules determined by F.

B P (if abundant at t) Q (suppressed at t + 1)
{(1, 0)} {(1, 1)}
{(1, 1)} {(1, 0)}
{(2, 0)} {(2, 1)}

Intra {(2, 1)} {(2, 0)}
{(3, 0)} {(3, 1)}
{(3, 1)} {(3, 0)}
{(4, 0)} {(4, 1)}
{(4, 1)} {(4, 0)}
{(2, 1)} {(1, 0)}
{(1, 0)} {(2, 1)}

{(3, 0), (4, 1)} {(2, 1)}
{(2, 1), (4, 1)} {(3, 0)}
{(2, 1), (3, 0)} {(4, 1)}
{(3, 0)} {(1, 0)}

Inter {(1, 0)} {(3, 0)}
{(3, 1)} {(2, 0)}
{(2, 0)} {(3, 1)}
{(4, 1)} {(3, 0)}
{(3, 0)} {(4, 1)}
{(4, 0)} {(1, 1)}
{(1, 1)} {(4, 0)}

{(1, 1), (3, 0)} {(1, 1), (3, 0)}
{(1, 0), (2, 0)} {(1, 0), (2, 0)}
{(1, 0), (3, 1)} {(1, 0), (3, 1)}
{(2, 1), (4, 0)} {(2, 1), (4, 0)}

Contra {(2, 0), (4, 1)} {(2, 0), (4, 1)}
{(3, 0), (4, 0)} {(3, 0), (4, 0)}

{(1, 1), (2, 1), (3, 0)} {(1, 1), (2, 1), (3, 0)}
{(2, 0), (2, 1), (4, 1)} {(2, 0), (2, 1), (4, 1)}
{(3, 0), (3, 1), (4, 1)} {(3, 0), (3, 1), (4, 1)}

2.1.3. Chaotic oscillatory dynamics

The dynamics of the units are given as follows:

Xi,v(t+1) =

Xi,v(t) + 1 (if (Ri,v(t) = 1 and |Xi,v(t)| < 2)

or Xi,v(t) ≤ −2),
Xi,v(t) − 1 (if (Ri,v(t) = 0 and |Xi,v(t)| < 2)

or 2 ≤ Xi,v(t)),
(8)

where Ri,v ∈ {0, 1} represents “resource supply” and Xi,v ∈
{−2,−1, 0, 1, 2}. The following function of the external

- 587 -

stimulus S i,v and internal fluctuation fi,v determines if the
resource is supplied (Ri,v = 1) or bounced back (Ri,v = 0) :

Ri,v(t) =
{

sgn(fi,v(t) − 1 + β+) (if S i,v(t) = 1),
sgn(1 − fi,v(t) − β−) (if S i,v(t) = 0), (9)

where sgn(r) = 1 if r > 0, otherwise 0, and β+ and β−
are parameters for adjusting the occurrences of errors in
stimulus response. Namely, the larger the β+, the more the
resource is likely to be supplied, even though it should be
suppressed when S i,v = 1. The larger the β−, the less the
resource is likely to supplied, despite the absence of the
inhibitory stimulus (S i,v = 0). We fix these parameters at
β+ = 0 and β− = 0.25 in this study, because these values
were confirmed to be the optimal. The internal fluctuation
fi,v is generated by the following logistic map

fi,v(t + 1) = 4 · fi,v(t) · (1 − fi,v(t)), (10)

which produces chaotic behavior.

2.1.4. Solution search process

The pseudocode for AmoebaSAT is given as follows.

INPUT: A k-SAT formula F.
OUTPUT: A satisfiable assignment or “not found”
BEGIN: Determine B (bounceback rules) of F

according to Eqs. (3), (4), (5), (6) and (7);
FOR (i, v) = (1, 0) to (N, 1)
Set Xi,v = 0, Ri,v = 0, and S i,v = 0;
Choose fi,v ∈ [0.0, 1.0] randomly; END FOR
REPEAT:

Obtain an assignment x from X by Eq. (1);
IF x satisfies F THEN RETURN x;
ELSE FOR (i, v) = (1, 0) to (N, 1)

Update Xi,v, Ri,v, fi,v, and S i,v

according to Eqs. (8), (9), (10),
and (2), respectively; END FOR

END IF

UNTIL: Run out of time;
RETURN: “not found”;

END:

A system state X is “stabilizable” if the following con-
dition holds for all units (i, v): If Xi,v(t) > 0 then S i,v(t) = 0,
or if Xi,v(t) ≤ 0 then S i,v(t) = 1. This is because, in a unit
where the above condition is not met, in response to S i,v(t),
sgn(Xi,v(t + 1)) may differ from sgn(Xi,v(t)), thus X is un-
stable. We designed the bounceback control dynamics so
that only satisfiable assignments (solutions) can be stabi-
lizable. In fact, among all possible states, we can confirm
that only the states mapped to the solution are stabilizable.

In the example of the solution search process shown in
Fig.1, we can confirm that the solution was found after 41
iterations and was likely to be stabilized, where the black
arrow indicates the time step when first the inverted binary
sequences of S i,v matched with the solution.

-2

-1
0

1

2

0 10 20 30 40 50 60 70 80 90 100

Xi,v

0

64

128

192

256

0 10 20 30 40 50 60 70 80 90 100

Ri,v

t

0

64

128

192

256

0 10 20 30 40 50 60 70 80 90 100

1-Si,v

Figure 1: Time evolution of AmoebaSAT solving the four-
variable instance given in the text. For Xi,v, the time series
data of 8 units were shown in different colors. For Ri,v,
the binary sequences of 8 units were transformed into a
decimal number series, where the solution (x1, x2, x3, x4) =
(1, 1, 1, 1) mapped to 85 was indicated by the black broken
line. For S i,v, the binary sequences were first inverted (i.e.,
S i,v 7→ 1 − S i,v), then expressed in a decimal number.

2.2. WalkSAT

WalkSAT is a stochastic local search algorithm which
finds a solution with a reasonably large probability after
taking a fairly small number of iterations [5].

INPUT: A k-SAT formula F
OUTPUT: A satisfiable assignment or “not found”
BEGIN: Choose an assignment x randomly;

REPEAT:

IF A satisfies F THEN RETURN x;
ELSE Choose a clause C randomly

from among unsatisfied clauses;
Choose a variable xi randomly
from among C’s variables;
Update x by flipping xi;

END IF

UNTIL: Run out of time;
RETURN: “not found”;

END:

In [5], the average number of iterations required for find-
ing a solution was estimated as an exponential function
(2(k − 1)/k)N poly(N). Thus, for 3-SAT, WalkSAT requires
an average of (4/3)N poly(N) iterations and is one of the
fastest algorithms.

3. Results

The SATLIB website provides benchmark instances [6].
We used a test set of “Uniform Random-3-SAT”, which
is a family of 3-SAT instance distributions obtained by
randomly generating 3-literal CNF formulae. The test set

- 588 -

“uf20-91” contains 1000 instances, each of which is a 20-
variable-91-clause formula. In this study, we focused on
54 instances in the test set, each of which has 8 solutions.

We evaluated the performances of AmoebaSAT and
WalkSAT by counting the number of iterations that each al-
gorithm required for finding a solution. For each instance,
we performed 500 trials of Monte Carlo simulations.

As shown in Fig. 2, for all instances, AmoebaSAT finds a
solution faster than WalkSAT. The average numbers of iter-
ations of the former and latter were approximately 374 and
1173, respectively. The performance of WalkSAT varies
wildly depending on instances. Also, it fluctuates greatly
depending on trials, as indicated by error bars. In contrast,
AmoebaSAT is robust in exhibiting its high performance.

1 10 20 30 40 50

0

1000

2000

3000

4000

5000

A
v
.

It
e

r
a

ti
o

n
s

 t
o

 F
in

d
 S

o
lu

ti
o

n

Instance ID

Figure 2: Performance comparison between AmoebaSAT
(red) and WalkSAT (blue). For each of 54 benchmark in-
stances, the number of iterations required for finding a solu-
tion was averaged over 500 trials, where error bar indicates
standard deviation.

4. Discussion and Conclusion

In this study, we demonstrated that AmoebaSAT exhibits
its powerful search ability for solving the SAT in a con-
current fashion. AmoebaSAT is a hybrid of chaotic os-
cillatory dynamics and spatiotemporal control dynamics.
We evaluated a modified version of AmoebaSAT in which
the chaotic fluctuation Eq. (10) was replaced with random
fluctuation (uncorrelated white noise). Compared with the
original version, the performance of the modified version
degraded significantly, which was even worse than that
of WalkSAT. In some previous studies [7, 8], the useful-
ness of chaotic dynamics for optimization has already been
demonstrated with chaotic neural network models and local
search algorithms. Why are chaotic fluctuations more pow-
erful than random fluctuations? Some authors reported that
negative temporal correlations in chaotic dynamics pro-
duce the powerful search abilities [9, 10]. We will examine
whether the same applies to AmoebaSAT.

We emphasize that AmoebaSAT is designed to run on
some physical substrates that are capable of implementing

similar spatiotemporal dynamics, for example, optical en-
ergy transfer dynamics between quantum dots mediated by
optical near-field interactions [11]. When implemented us-
ing these dynamics with spatial and temporal correlations,
AmoebaSAT will exhibit its maximum power for larger-
sized instances owing to its highly concurrent nature.

References

[1] R. Poli, J. Kennedy, T. Blackwell, “Particle swarm
optimization. An overview,” Swarm Intelligence,
vol.1(1), pp.33–57, 2007.

[2] M. Aono, M. Hara, K. Aihara, “Amoeba-based neuro-
computing with chaotic dynamics,” Communications
of the ACM, vol.50(9), pp.69–72, 2007.

[3] M. Aono, Y. Hirata, M. Hara, K. Aihara, “Amoeba-
based chaotic neurocomputing: Combinatorial opti-
mization by coupled biological oscillators,” New Gen-
eration Computing, vol.27, pp.129–157, 2009.

[4] M. R. Garey, D. S. Johnson, “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” W. H. Freeman and co., New York,
1979.

[5] U. Schoning, “A probabilistic algorithm for k-SAT and
constraint satisfaction problems,” Proc. 40th Sympo-
sium on Foundations of Computer Science, pp.410–
414, 1999.

[6] H. H. Hoos, T. Stutzle, “SATLIB: An online resource
for research on SAT,” Proc. SAT2000, pp.283-292, IOS
Press, 2000. Benchmark instances are available online
at http://www.cs.ubc.ca/ hoos/SATLIB/benchm.html

[7] K. Aihara, T. Takabe, M. Toyoda, “Chaotic neural net-
works,” Phys. Lett. A, vol.144, pp.333–340, 1990.

[8] M. Hasegawa, T. Ikeguchi, K. Aihara, “Combination
of chaotic neurodynamics with the 2-opt algorithm to
solve traveling salesman problems,” Phys. Rev. Lett.,
vol.79(12), pp.2344–2347, 1997.

[9] M. Hasegawa, K. Umeno, “Solvable performance of
optimization neural networks with chaotic noises and
stochastic noise with negative correlation,” Lecture
Notes in Computer Science, vol.4984, pp.693–702,
Springer, 2008.

[10] K. Umeno, “Performance of chaotic Monte Carlo
computation and chaos codes for communications:
Theory and experiments,” AIP Conf. Proc., vol.1339,
pp.197–209, 2011.

[11] M. Naruse, M. Aono, S. -J. Kim, T. Kawazoe, W. No-
mura, H. Hori, M. Hara, M. Ohtsu, “Spatiotemporal
dynamics in optical energy transfer on the nanoscale
and its application to constraint satisfaction problems,”
submitted.

- 589 -

