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Abstract—We investigated the co-evolving dynamics of
a network and the state on it. We considered a reaction-
diffusion system on a weighted network, in which a dissi-
pative resource on the nodes, such as molecules, individu-
als, money, or data packets, move diffusively to other nodes
through weighted links. Simultaneously, the weighted con-
nections dynamically change in a resource-dependent man-
ner. We demonstrate that this interplay between dynamics
both on and of a network, yields self-organized network of
the interaction of the dynamical system, involving an emer-
gence of power-law distributions in both the quantities of
the resource and the strengths of the links. Our results offer
a framework for understanding the functional structures of
real-world networks pertinent to resource distribution.

1. Introduction

The term network is commonly used in a wide range of
research fields, including physics, mathematics, biology,
computer science, engineering, and sociology. The word
usually indicates complex relationships of the interactions
observed in these research fields. In general, it is difficult
to interpret structure of such complex interactions and the
mechanisms that organize them.

In this study, we propose a model of network organi-
zation that integrates both the dynamics of a network and
the state on it. In most previous network science studies,
the structure of the interactions is simply described by an
adjacency matrix ai j, in which ai j =1 or 0 depending on
whether the link between nodes i and j exists or not, re-
spectively. This abstract representation has provided a gen-
eral framework to analyze network feature observed in the
real-world networks, and to explain the network organiza-
tion process of them. For example, the Barabási-Albert
(BA) algorithm [1], which generates a model of scale-free
networks, is based only on information from an adjacency
matrix, such as the degree distribution. Most other models
of network organization also have been discussed within
the framework of an adjacency matrix, even though several
extensions have been considered [2, 3, 4, 5]. These simple
models that represent a network abstractly are beneficial for
understanding the essential mechanisms of complex real-
world networks. However, there is another important as-
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Figure 1: Schematic illustration of co-evolving network
dynamics, in which the link weights of the network and
dynamical states of the nodes influence each other. In
our model, the quantity of resource xi of the ith node is
transported diffusively to the connected nodes through the
weighted links wi j, while the weights of the links evolve in
a resource-dependent manner (i.e., the law of mass action).

pect of real-world networks, i.e., network links originate
from relationships of the interactions in the system, and the
organization of these interactions depends directly on the
dynamical state of the system. For example, in a neural net-
work, the modulation of the synaptic connection between
neurons depends directly on the activities of the neurons,
and not on the topology of the neural network [6, 7], even
though the topology of the network represented in the adja-
cency matrix can affect the organization process indirectly,
since it affects the dynamics of the system. In other biolog-
ical, social, and technological networks, the organization of
a network is usually dependent on local information of the
activities of the system, while the topology of the network
actually affects these system activities [8]. Therefore, the
interplay between the dynamical states of the systems on
a network and the topological evolution of the network of
the interactions is a key for obtaining a more complete un-
derstanding of the network organization process for these
interactions. Therefore, we formulate a co-evolving net-
work dynamics, integrating both types of dynamics.

2. Model

In this study, we propose a framework for mathemati-
cal modeling of co-evolving weighted networks, by em-
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Figure 2: Time development of the quantity of the resource at nodes and the weights of the connections, organized through
the co-evolving dynamics defined by equations (1) and (2). In the graph, the size of the circle represents the quantity of
the resource at the node, and the width of the link represents the weight of the link. The initial values of the resource and
the weight are generated with mean µ = 1 and standard deviation σ = 0.1. The underlying topology is given by a regular
random graph of size N = 64 and degree k = 5). The other parameter values are ϵ = 0.01, κ = 0.05, and D = 0.35.

ploying reaction-diffusion dynamics. Diffusion is a very
simple but fundamental process in many physical and so-
cial phenomena occurring in real-world networks, such as
traffic flows and transports over the network, information
dissemination on communication networks, and epidemic
spreading. Therefore, among the possible dynamical pro-
cesses on a network, we here consider a diffusion-based
dynamical process on a network as illustrated in Fig.1. We
consider the quantity delivered by the diffusion process as
a resource for the network. It may correspond in realistic
situations, for example, molecules, cells, people, or money.
The quantity of the resource represents the state xi of the
i-th node in the network. We formulate the reaction dif-
fusion dynamics of the resource as follows. First, let us
consider a weighted network of N nodes. The link struc-
ture of the network is defined by the adjacency matrix ai j.
We assign a time-dependent weight wi j(t) to each existing
link. This weight represents the strength of the interaction.
In addition, we assume that these weights are symmetric;
that is, wi j(t) = w ji(t). The evolution of xi(t) is given by the
following equation:

∆xi(t) = F(xi(t)) + diffusion process via links,

where ∆xi(t) ≡ xi(t + 1) − xi(t). F(x) represents the re-
action process of the resource for which we employ a
simple dissipative with equilibrium x = 1, described by
F(x) = −κ(x − 1). The diffusion process can be under-

stood as the diffusion of many random walkers, in which
the walkers at node i move to the neighboring node j in
accordance with the time-dependent weighted probability
Dw ji(t)/si(t). Here, si(t) is the strength of the node i de-
fined by si(t) ≡

∑
j∈Ni

w ji(t), where Ni is the set of nodes
connected with node i. Thus, the master equation for the
resource is given by

∆xi(t) = F(xi(t)) + D
∑
j∈Ni

(
wi j

s j
x j −

w ji

si
xi

)
, (1)

where the second and third terms are the inward and out-
ward current of the resources at i-th node, respectively.

Simultaneously, the network is organized according to
the resource distribution between the nodes. Even though
little is known about the elementary process of network or-
ganization in real-world networks, in this study, we intro-
duce a simple dynamics of the link weights in accordance
with the law of mass action, as follows. We assume that the
evolution of the weight wi j(t) depends on the two resources
at the endpoint nodes of the link, xi(t) and x j(t). At the
first step, we assume that the quantities of the resource at
the two nodes have linear dependency, so the weight wi j(t)
merely relaxes to xi(t)x j(t). Therefore, the dynamics of the
weights is described by

wi j(t + 1) − wi j(t) = ϵ
[
xi(t)x j(t) − wi j(t)

]
, (2)
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Figure 3: Typical network features emerging through the
co-evolving dynamics. Cumulative distributions of the re-
sources xi, weights wi j, and strengths si converge to power-
law forms. The initial topology was chosen to be the Erdös-
Rényi random graph with N = 16384 and ⟨k⟩ = 10. The
initial resources and weights were generated by a normal
distribution with mean µ = 1 and standard deviation σ =
0.1. Other parameters are κ = 0.05, D = 0.34, and ϵ = 0.01.

where the parameter ϵ−1 represents the relaxation time
scale of the weight dynamics.

3. Results

Figure 2 shows the time development of a typical be-
havior of the co-evolving dynamics defined by equations
(1) and (2). In the graphs of the networks, the size of the
circle and width of the link represent the quantity of the
resource at the node and weight of the connection, respec-
tively. Their initial values are almost homogeneous, and
are generated by a normal distribution with mean µ = 1 and
standard deviation σ = 0.1. From the time step t = 0 to
t = 4000, the quantities of the resource are gathered into
the few nodes at the top of the graph, and simultaneously,
the weights of the connections between these resource-rich
nodes become potentiated. In other words, a heterogeneous
network of the resource and the weight is organized. Next,
until t = 6000, other nodes (at the bottom of the graph) be-
gin to develop their quantities of the resource, and then the
path between the resource-rich nodes at the top and bottom
becomes potentiated. The potentiation of this path causes
the resource distribution among the nodes to change drasti-
cally. At t = 8000, the resource is concentrated in the nodes
located on the way to the path. In contrast, the nodes that
were hubs at previous times lose their resource and the po-
tentiated weights of the links from other nodes. Then, simi-
lar processes are repeated. The resource distribution among
nodes and the weights of the links between them continue
to change indefinitely through the co-evolving dynamics.

For a large network (N = 16384), we investigated the
cumulative distributions of the resource and the weight.
We have found that, under feasible conditions, these dis-
tributions asymptotically converge to power-law forms as
shown in Fig. 3. The cumulative distribution of the re-
source takes a power-law form with exponent γ ∼ −1. This
distribution is consistent with Zipf’s law [9]. This type of
power-law distribution has been reported in many physi-

E
x
p
o
n
e
n
t
 
o
f
 
t
h
e
 
c
u
m
u
l
a
t
i
v
e

 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
r
e
s
o
u
r
c
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.02  0.04  0.06  0.08  0.1

D
i
f
f
u
s
i
o
n
 
c
o
n
s
t
.
:
 
D

Decay const. : κ

-1.5

-1

-0.5

 0

Figure 4: Dependence of the exponent of the cumulative
distribution of resources on the decay constant, κ, and the
diffusion constant, D. The other parameter values are the
same as in Fig. 3. The “x” indicates the parameter values
used in Fig. 3.

cal and social phenomena, including word frequencies in
natural languages, populations of cities, statistics on Web
access, and the sizes of companies [10, 11, 12, 13, 14].

Similarly, the weights wi j also exhibit a power-law dis-
tribution in the stationary state with a different exponent. In
this stationary state, we confirmed that these distributions
converge to fixed forms, even though on the microscopic
level, the the resource quantities and weights change indefi-
nitely as stated above. Moreover, strengths si (≡ ∑

j ai jwi j),
which corresponds to the generalized metric of degree k
(≡ ∑

j ai j) in weighted networks, also exhibit a power-law
distribution. Therefore, through the dynamics, a type of
scale-free network can be organized.

The exponent of the resource power-law distribution
generally depends on the parameter values, such as the
decay constant, κ, and the diffusion constant, D. Figure
4 plots the exponent of the cumulative resource distribu-
tion in (κ,D) space. These results were obtained by fitting
the numerically generated distributions to the form xγ with
least-squares fit. In the graph, the color of a point on the
grid indicates the value of its exponent, corresponding to
the color bar at right. As seen there, the exponent decreases
to approximately -1.5 with increasing κ and decreasing D.
In a regime at high κ and low D, for which there are no
colored points on the grid, the organized distributions are
of a non-power law type. Thus, we see that the resource
disparity among the nodes is an increasing function of D
and a decreasing function of κ.

4. Summary

In this study, employing reaction-diffusion dynamics, we
have introduced a framework for mathematical modeling of
co-evolving weighted networks and have investigated the
system in a simple dissipative diffusion process of a sin-
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gle resource with resource-dependent weight evolution (in
accordance with the law of mass action). We have demon-
strated that both the resource and weight distributions ex-
hibit power-law forms in the asymptotic state as a result of
the interplay between those dynamics both on and of the
network. Furthermore, we have found a dynamical phase
in an organized scale-free network.

These findings provide novel insight of the functioning
of the network structure, because an organized network
structure is directly related to resource diffusion on a net-
work through co-evolving dynamics. Therefore, we believe
that further study of co-evolving dynamics will help us elu-
cidate functional network structures pertinent to resource
distribution over networks.
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