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Abstract—A piece-wise constant (ab. PWC) spiking
neuron model (ab. PWN), which can reproduce various
bifurcations observed in standard neuron models, is intro-
duced. Using knowledge of bifurcations of the PWN, a
heuristic but powerful learning method for the PWN is pro-
posed. It is shown that the PWN can learn a typical re-
sponse of the Izhikevich model which is also observed in
not only other standard neuron models but also biological
neurons.

1. Introduction

Neurons exhibit various responses depending on stim-
ulation inputs and parameter values. Many mathematical
neuron models and related analog circuit implementations
have been studied intensively, where most models are de-
scribed by continuous ordinary differential equations (ab.
ODEs) like the Hodgkin-Huxley model, continuous ODEs
with state-dependent resets like the Izhikevich model, and
piece-wise smooth ODEs with/without resets [1]-[13]. Re-
cently, an alternative hardware-oriented neuron modeling
approach by using a piece-wise constant (ab. PWC) ODE
with a state-dependent reset has been proposed [14]-[16].
It has been confirmed that the PWC spiking neuron model
(ab. PWN) can reproduce a variety of neuron-like re-
sponses and related bifurcation phenomena. The bifurca-
tion phenomena have been analyzed so far, and the suf-
ficient parameter spaces for existence of some responses
have been derived. In this paper, we propose a heuristic
but powerful learning method for the PWN that utilizes
the knowledge of the bifurcation phenomena. It is shown
that the PWN can learn a response of the Izhikevich model
which is also observed in not only other standard neuron
models but also biological neurons. Novelties and signifi-
cances of this paper include the following points. (1) This
paper shows the learning method for the PWN for the first
time. (2) The neural prosthesis is a recent hot topic, where a
typical approach is to prosthesize a damaged part of neural
systems by a digital processor [17, 18]. On the other hand,
sensory neurons should be prosthesized by analog circuits
since sensory neurons accept analog signals and it is not so
efficient to utilize digital processor neurons together with
analog-to-digital converters to implement them. The learn-
ing method for the PWN will be useful for parameter tuning
before implementation. Note that different kinds of neu-
rons have different parameter values.
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PWC spiking neuron Meaning as a neuron model
Capacitor voltage v Membrane potential
Capacitor voltage u Recovery variable
Constant voltage VT Spiking threshold
Pulse Y = EH Firing spike (Action potential)
Voltage input Vin Stimulation input

Figure 1: (a) The generalized piece-wise constant spik-
ing neuron model (ab. PWN). (b) Characteristics of the
voltage-controlled current source (ab. VCCS).

2. Piece-wise Constant Spiking Neuron Model

A piece-wise constant spiking neuron model (ab. PWN)
is introduced in Fig.1(a). The PWN consists of two ca-
pacitors whose capacitances are C and C, two voltage-
controlled current sources (ab. VCCSs) which are de-
scribed by functions Iv and Iu, a state-dependent switch
S W with an internal resistor rε, a voltage source VB, and
an output Y . From a neuron model’s viewpoint, the capaci-
tor voltages v and u can be regarded as a membrane poten-
tial and a recovery variable [1], respectively, as explained
in the table in Fig.1. Fig.1(b) shows characteristics of each
VCCS: it outputs a constant current if the control voltage vε
is positive and outputs another constant current if vε is neg-
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Figure 2: Burst-related bifurcation phenomena of the
PWN. The parameters of the PWN are a = 5.0, I+v = 1.0,
I−v = −1.0, I+u = 0.3, I−u = −0.3, VT = 1.0, VB = 0.6, and
C = 1.0. (a) Stable resting state. Vin = −1. The PWN
doesn’t oscillate and output any spikes. (b) Stable tonic
bursting. Vin = 1. The PWN oscillates and output bursting
spikes periodically. (c) Stable tonic bursting. Vin = 3. The
PWN oscillates and output bursting spikes periodically. (d)
Stable tonic spiking. Vin = 5. The PWN oscillates and out-
put single spikes periodically The changes of phenomena
between (a) and (b), and (c) and (d) are border-collision
bifurcations [19].

ative. If the membrane potential v is below a constant volt-
age VT , the state-dependent switch S W is opened. From a
neuron model’s viewpoint, the constant voltage VT can be
regarded as a spiking threshold. If the membrane potential
v reaches the spiking threshold VT , the switch S W is closed
for a short time duration tε and is opened again. In this pa-
per, the time duration tε is assumed to be much shorter than
C(VT − VB)/I+v and C(VT − VB)/I−v , and the time constant
rεC is assumed to be much shorter than the time duration tε.
Under these assumptions, the membrane potential v is ap-
proximated to exhibit an instantaneous jump to the constant
voltage VB when v reaches the spiking threshold VT , where
VB is referred to as a reset base in this paper. When the
switch S W is opened (closed), the PWN outputs a constant
voltage Y = EL (an instantaneous pulse Y = EH). From
a neuron model’s viewpoint, the pulse Y = EH can be re-
garded as a firing spike or an action potential as explained
in the table in Fig.1. Also, the PWN accepts a voltage input
Vin that can be regarded as a stimulation input. As a result,
the dynamics of the PWN is described by the following
equation. {

Cv̇ = Iv(|v| + Vin − u)
Cu̇ = Iu(av − u) if v < VT ,

v(t+) = VB if v(t) = VT ,

Iv(vε) =
{

I+v if vε > 0,
I−v if vε < 0, (1)

Iu(vε) =
{

I+u if vε > 0,
I−u if vε < 0,

Y(t) =
{

EH if v(t) = VT ,
EL if v(t) < VT ,

where the dot ”˙” represents the time derivative ”d/dt”, the
symbol ”t+” represents the moment ” limε→+0(t + ε)” just
after t hereafter, a, VB, I+v , I−v , I+u , I−u are parameters,
VT > VB and v(0) < VT are assumed, and the spiking
threshold VT can be normalized to VT = 1 without loss
of generality. EH and EL have no effects against the dy-
namics of the PWN. Note that the currents Iv(vε) and Iu(vε)
are assumed to be multivalued functions with respect to the
voltages vε, i.e., Iv(vε) for vε = 0 (Iu(vε) for vε = 0) takes a
value in (I−v , I

+
v ) (a value in (I−u , I

+
u )) that is determined not

only by the voltage vε but also by other voltages and cur-
rents in the circuit in Fig.1(a). The dynamics for the cases
of vε = 0 are omitted in this paper due to the page length
limitation [14]–[16].

3. Bifurcation-based Learning

In this section, we propose a heuristic learning method
for the PWN that utilizes the knowledge of bifurcation phe-
nomena. In this paper, the teacher neuron is the Izhikevich
model described by the following equation.{

v̇ = 0.04v2 + 5v + 140 − u + I,
u̇ = a(bv − u), (2)

if v ≥ 30mV, then
{

v← c,
u← u + d,

where (a, b, c, d) are parameters. The stimulation input Vin

of the PWN (student neuron) is converted as follows by
considering the difference between the Izhikevich model
and the PWN.

Vin = rI + Vbias, (3)

where r and Vbias are regarded as a sensitivity and bias volt-
age, respectively. Also, in this paper,

v′ = v +
Y − EL

EH − EL
K (4)

is used to show neuron-like waveforms, i.e., spiking wave-
forms of v′ are regarded as action potentials. The learning
parameters of the PWN (student neuron) are

r,Vbias, a,VB, I+v , I
−
v , I
+
u , I

−
u . (5)
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Figure 3: The sufficient condition in Equation (6) for exis-
tence of the burst-related bifurcations. 1 < a, 0 < I+v , 0 <
VT ,VB > 0.

1st stage: Rough parameter setting

A variety of bifurcation phenomena of the PWN have
been analyzed so far, and the sufficient parameter spaces for
existence of some responses have been led [14]-[16]. For
example, the PWN can reproduce burst-related bifurcation
scenario in Fig.2, where the sufficient parameter space is
given as follows (see also Fig.3) [15].

1 < a, 0 < I+v , 0 < VT , 0 < I+u /I
+
v < VB/VT ,

−1 < I−u /I
+
v < 0, VB > 0. (6)

In order for the teacher neuron to exhibit a desired response
(e.g., bursting), the learning parameters of the student neu-
ron are restricted in the corresponding sufficient parameter
space.

2nd stage: Fine parameter tuning

As shown in Fig.4, a learning algorithm is proposed.
The learning algorithm searches better parameters within
the restricted parameter space, updates parameters, and
repeats these ”restricted 2-opt like searches” finite times
like [20, 21]. A heuristic evaluation function of the learn-
ing algorithm checks numbers of spikes, inter-spike inter-
vals, and inter-burst-intervals. The detailed expressions
of the evaluation function is shown at the conference as
well as in our future paper. In Fig.5(a), the Izhikevich
model (teacher neuron), whose parameters are (a, b, c, d) =
(0.02, 0.2,−50, 2), exhibits a bursting response. Hence, the
learning parameters of the PWN (student neuron) is re-
stricted in the parameter space (6) in the 1st stage. In
Fig.5(b), at the initial state, the PWN (student neuron)
doesn’t exhibit bursting response. In Fig.5(c), after 1000
times learning, the PWN (student neuron) learns to exhibit
bursting response which is very similar to Fig.5(a) of the
Izhikevich model (teacher neuron). In conclusion, as is

Figure 4: Learning algorithm.

shown above, the PWN (student neuron) can learn the re-
sponse of the Izhikevich model (teacher neuron) which is
also observed in not only other standard neuron models but
also biological neurons.

4. Conclusions

The PWN, which can reproduce various bifurcations ob-
served in standard neuron models, has been introduced.
The heuristic but powerful learning method for the PWN
that utilizes knowledge of bifurcations of the PWN has
been proposed. It has been shown that the knowledge of
the bifurcations enables the PWN to learn the bursting re-
sponse of the Izhikevich model efficiently. Future problems
include : (a) implementation of the learning method in an
actual hardware, and (b) proposal of more efficient learning
methods.
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