
IEICE Proceeding Series 
 
 
 
 
Analysis on network topology and dynamics of information diffusion 

 
 
Akiyoshi Tanaka, Yutaka Shimada, Kantaro Fujiwara, Tohru Ikeguchi 

 
 
Vol. 1 pp. 57-60 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Analysis on network topology and dynamics of information diffusion

Akiyoshi Tanaka†, Yutaka Shimada†, Kantaro Fujiwara†, and Tohru Ikeguchi†,‡

†Graduate School of Science and Engineering, Saitama University
255 Shimo-Ohkubo, Sakura-ku, Saitama-city, Saitama, 338-8570 Japan

‡Brain Science Institute, Saitama University
255 Shimo-Ohkubo, Sakura-ku, Saitama-city, Saitama, 338-8570 Japan

Email: {Tanaka, sima}@nls.ics.saitama-u.ac.jp, kantaro@mail.saitama-u.ac.jp, tohru@mail.saitama-u.ac.jp

Abstract—Information diffuses in real networks. In this
paper, we investigated how information diffuses in com-
plex networks and what are important factors in the in-
formation diffusion. To discuss this issue, we focused on
two results: D. Watts and S. Strogatz showed that the in-
formation diffuse widely and quickly across a random net-
work which contains many shortcuts (Nature, 343, 440–
442, 1998). On the other hand, D. Centola reported that
the information diffuse widely and quickly across a lattice
network which contains few shortcuts (Science, 329, 1194–
1197, 2010). We analyzed how the difference between the
results is caused, introducing two hypotheses. First, as-
suming that network topology contributes greatly to the
information diffusion, we analyzed the relations between
network topology and information diffusion．Second, we
focused on the dynamics of information diffusion, namely
how to diffuse information in networks. We then proposed
a simple model of the information diffusion. As a result, the
network topology did not affect the information diffusion.
However, our model can replicate Centola’s result that the
information diffuses widely and quickly in the lattice net-
works with few shortcuts. These results suggest that the
dynamics of information diffusion affects the dynamics on
networks more greatly than the network topology.

1. Introduction

In the real world, various phenomena occur by interac-
tions between many components. If we regard the com-
ponents as nodes and their interactions as links, we can
describe many kinds of real systems as networks. For ex-
ample, in a network of friendships, persons are nodes and
their relationships are links. Because the number of nodes
is large and their connections are complex in many real
networks, these networks are called complex networks [1].
In the real complex networks, several kinds of information
diffuse, for example, diseases, electric pluses in neural net-
works, electrical energy in power grids, and so on. There-
fore, it is very important to clarify how the information dif-
fuses in networks toward effective prevention against in-
fectious diseases, understanding neural systems, and so on
[2].

Here, we focused on two experimental results reported
in Refs. [3] and [4]. In 1998, using a simple model of

infectious diseases, D.Watts and S.Strogatz showed that in-
formation diffuses widely and quickly across random net-
works whose average path length between nodes are short.
On the other hand, in 2010, D.Centola studied the infor-
mation diffusion through social networking service on the
Internet. As a result, the information diffused more widely
and quickly across lattice networks whose average path
length is longer than the random networks.

In this paper, we focused on the disagreement of these
two results in Refs. [3] and [4], and we analyzed how these
differences are originated. To solve this issue, we analyzed
the information diffusion in terms of the network topology
and the dynamics of information diffusion. We assume that
the disagreement of two experimental results is caused by
the difference in network topology or that in the dynamics
of information diffusion. Then, we constructed a simple
model of diffusion dynamics that is involved in Centola’s
experiments. Our results clearly show that the information
diffusion does not depend on network topologies but on dif-
fusion dynamics.

2. Network topology

In Ref. [3], Watts and Strogatz used a ring-lattice net-
work (RLN) and generated the random networks by ran-
domly rewiring links in the RLN. Because the degree of
nodes changes after the random rewiring, we call this ran-
dom rewiring degree-non-preserving-rewiring (DNPR). On
the other hand, in Ref. [4], Centola used a hexagonal-
lattice network (HLN) and generated the random networks
by rewiring links in the HLN so that the degree of all
nodes does not change after the random rewiring [5][6]. In
this sense, we call this random rewiring degree-preserving-
rewiring (DPR).

The RLN and the HLN have almost the same proper-
ties; namely nodes in the RLN and the HLN have the same
degree, their average path length are long, and they have
many clusters in which any three nodes are connected to
each other. However, their network topology is slightly
different (Fig. 1). In addition, because the processes of
the rewiring are different in Refs.[3] and [4], random net-
works generated from the RLN and the HLN are different:
a random network generated by DPR holds the degree of
its original network but that by DPR does not. Then, we
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also investigated the clustering coefficients of the RLN, the
HLN and random networks (The results are not shown). As
a result, the clustering coefficients of the RLN and the HLN
are high, and those of random networks are low. These re-
sults do not depend on whether the degree is held or not.

(a) (b)

Figure 1: (a) ring-lattice-network [3]. (b) hexagonal-
lattice-network [4].

3. Dynamics of information diffusion

3.1. Epidemic model

Using a simple epidemic model, Watts and Strogatz in-
vestigated how infectious diseases diffuse in the RLN and
the random networks generated by DNPR [3]. At time
t = 0, a node is selected from the RLN in which all nodes
are healthy. The selected node is then infected. After that,
infected nodes are permanently removed from the network
after a period of sickness. During this time, they infect their
healthy adjacent nodes with probability r. This process is
repeated until all nodes are infected or the virus dies out.

3.2. Behavior in an online community

Centola studied the spread of a health behavior through
a network-embedded population by creating an Internet-
based health community website [4]. He gathered par-
ticipants who were interested in health from other health-
interest websites. The participants including Centola were
randomly arranged to nodes in the HLN and a correspond-
ing random network created from the HLN by RPD. At
time t = 0, Centola send a message which contains infor-
mation about health to his adjacent nodes. If the partici-
pants receive the message and have an interest, the message
is automatically forwarded to their adjacent nodes. Once
the message is forwarded, the corresponding participants
never receive and send messages.

4. Analysis from view point of network topology

We first focus on topological differences between the
networks used in Refs. [3] and [4]. Network topologies
of both the RLN and the HLN are slightly different. The
degree of nodes in the random networks generated by DPR

is the same, but that by DNPR is not. We assume that these
differences in the network topology affect information dif-
fusion. In our experiment, we used the RLN, the HLN,
and the random networks generated from the RLN and the
HLN by DNPR and DPR. Thus, we used six networks in
all. Applying the epidemic model to these networks, we
investigated how the information diffusion depends on the
difference of the network topology. The probability r is set
to 0.5. The number of nodes N in the RLN and the HLN
is 128, and the degree k of nodes is 6. We measured how
many nodes are infected at time t by the diffusion rate R
defined as follows:

R =
1
N

N∑
i=1

ai, (1)

where N is the number of nodes in a network; if the ith
node is infected, ai = 1, otherwise ai = 0.

We show the temporal changes of the diffusion rate in
Fig. 2. The horizontal axis shows time t and the vertical
axis shows the diffusion rate. The diffusion rate is averaged
for one hundred initial states at each time. In each time, the
disease typically diffuse across a wider range in the random
networks (solid blue triangles) than in the RLN and the
HLN (solid red circles). In addition, the disease diffuses
more quickly in the random networks than the RLN and
the HLN. Figure 2 indicates that the experimental results
in Ref. [4] is not reproduced because the disease diffuses
widely and quickly in the random networks. This suggests
that the disagreement of two experimental results between
Watts and Strogatz [3] and Centola [4] is not caused by the
network topology.

5. Proposed model of information diffusion

Next, we focus on the diffusion dynamics, namely how
the information is diffused dynamically. In the epidemic
model of Watts and Strogatz and the experiments by Cen-
tola, when nodes receive information, the nodes send it to
its adjacent nodes and thereby the information diffuses step
by step. In this sense, their dynamics of information dif-
fusion is similar. However, the nodes in the experiments
by Centola have some typical features shown in the follow-
ing subsections. Including these features into the epidemic
model, we propose a new model and numerically reproduce
the experiment conducted by Centola.

5.1. Intrinsic sending probability

When a participant receives a message, the probabil-
ity that he/she forwards it to neighbors depends on ev-
ery participant. The probability of each participant is de-
fined as λi (i = 1, · · · ,N). In numerical simulations, we
used three types of the probability λi: the fixed value,
λ1 = λ2 = · · · = λN = 0.5, random numbers that obey
the uniform distribution in [0, 1], and those that obey the
gamma distribution whose average µ and variance σ are
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Figure 2: Temporal changes of the diffusion rate. The hor-
izontal axis shows time and the vertical axis shows the dif-
fusion rate (Eq. (1)). The solid red circles in (a) and (b)
correspond to the RLN, and those in (c) and (d) correspond
to the HLN. The solid blue triangles in (a) and (c) corre-
spond to the random networks created by DNPR, and those
in (b) and (d) correspond to the random networks by DPR.
The vertical bars are the diffusion rate with the standard
deviations of the diffusion rates.

0.5 and 0.028. Then, we calculate the diffusion rate de-
fined in Eq. (1), namely if the ith node has an interest to
the message, ai = 1, otherwise ai = 0.

We show the temporal changes of diffusion rate in Fig.
3. From Fig. 3, we can see that depending on distribution,
the diffusion rates in the RLN and the HLN are different,
and that the messages diffuse less widely and less quickly
in the RLN and the HLN than in the random networks for
any case. In other words, the messages diffuse widely and
quickly across the random networks regardless of whether
λ is fixed or distributed. From these results, the distribution
of λ does not affect the results that the information diffuses
widely and quickly across the RLN and the HLN. In the
following simulations, we fix λ for the sake of simplicity.

5.2. Dynamical sending probability

Centola reported that participants tend to have an inter-
est in the received message if they receive two or more
messages.To realize this, we introduce a new rule. If the
node receives another message after receiving a message,
its sending probability increases in λ + α. In this way, we
change the sending probability λ to λ+α, so that we realize
the above-mentioned dynamics.

We set λ to 0.01 and α to 0.6 when we conducted the
numerical experiments to realize significant difference be-
tween the case that a node receives only one message and
that a node receives multiple messages. If α is too small,
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Figure 3: Temporal changes of the diffusion rate．The hor-
izontal axis shows time, and the vertical axis shows the dif-
fusion rate, where λ = 0.5 (red), the uniform distribution
(blue), and the gamma distribution (green).

there is no advantage for receiving multiple messages, so
that messages will diffuse widely and quickly across the
random networks. We measured the rate of diffusion by
Eq. (1).

The temporal changes of diffusion rates are shown in
Fig. 4. The messages diffuse widely and quickly across
the RLN and the HLN whose clustering coefficient is high.
In particular, in Fig. 4(d), we used the HLN and its random
network generated by RPD as well as in Centola’s exper-
iments. Fig. 4(d) indicates that the experimental results
that Centola reported are replicated. However, the standard
deviation of both the RLN and the HLN and the random
networks take large values and the differences of the diffu-
sion rate between the RLN and the HLN and the random
networks are not statistically significant.

5.3. Elimination of nodes never sending messages

In our model, if a node receives messages, the node
sends the messages to its adjacent nodes within a finite time
period. However, it is natural to assume that nodes which
have no interest in the messages never send them. To in-
troduce this feature to our model, the nodes are forced not
to send and receive the messages if they do not send the
messages within a given time period T . The time period T
depends on each node. We assign the time period Ti to the
ith node. Ti is a normal random number whose average µ
and variance σ are 15 and 1.6. If Ti is large, our models are
essentially the same as the model that T is not introduced.

We show the temporal changes of diffusion rate in Fig. 5.
The diffusion rate of the random networks and its standard
deviation in Fig. 5 are lower than that in Fig. 4. Com-
paring with Fig. 4, the difference of diffusion rate between
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Figure 4: Temporal changes of the diffusion rate in the case
that the nodes receiving two or more messages transmit
more easily than those receiving only one message.

the RLN and the HLN and the random networks are sta-
tistically significant. Therefore, our model can reproduce
Centola’s results that the messages diffuse more widely and
quickly across the RLN and the HLN than the random net-
works (Fig. 5(d)).
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Figure 5: Temporal changes of the diffusion rate when the
time period T is introduced.

6. Conclusion

In this paper, we studied the mechanism of information
diffusion across the RLN and the HLN and corresponding
random networks to investigate the disagreement between
two results in Refs. [3] and [4]. In Refs. [3] and [4], the

information diffusion in the RLN and the HLN and random
networks is investigated. However, the networks are differ-
ent in Refs. [3] and [4]. Based on the difference, first we
applied the conventional epidemic model [3] to the RLN
and the HLN and random networks. As a result, the re-
sults in Ref. [4] were not reproduced: the information dif-
fused widely and quickly across the random network. Next,
we proposed a new model of the information diffusion, in-
troducing three properties into the conventional epidemic
model: (1) the intrinsic sending probability of nodes that
the nodes transmit information, (2) the dynamical sending
probability that the nodes receiving two or more messages
transmit more easily than those receiving only one mes-
sage, and (3) the elimination of nodes which have not sent
messages for a time period T . As a result, we showed that
the intrinsic probability did not contribute to the results in
Ref. [4]. However, by introducing the dynamical sending
probability and the elimination of nodes, the information
diffused widely and quickly across the RLN and the HLN.
These results indicate that the disagreement between two
results [3] and [4] is not caused by the network topology,
but by the dynamics of information diffusion.
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