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Abstract—We study the synchronization properties
of excitable FitzHugh-Nagumo elements in a one-
dimensional network. Elements are coupled to their near-
est neighbors with a stimulating, or rectifying, term with
time delay. We first show how time delay can be obtained
for networks of coupled neurons. States of global synchro-
nization in the network are analyzed by bifurcation theory.
We then consider spatial aspects of the synchronization by
direct simulation for fixed and distributed delay times and
characterize the effect on the shape of excitation spikes.
We find that for distributed delays, echo pulses appear and
meander and are of arbitrary duration, whereas for non-
distributed delay they are fixed and of constant duration.

1. Introduction

Coupling of nonlinear dynamical equations by delay is
a widely used modeling approach for phenomena as for
example laser systems [1] and neuronal communication
[2, 3]. In [4] we compared dynamical behaviors of ar-
rays of excitable elements according to the nature of the
coupling, either diffusive or time-delayed. In the case of
time-delayed coupling, signals from neighboring elements
were shown to serve as mutual excitations, resulting in a
prolonged duration of the excitation. In this analysis lo-
cal dynamics was described by a FitzHugh-Nagumo-type
model.

Later we considered genuinely spatial structures by al-
lowing for large domains and translation of excitatory
spikes through the domain [5]. There we described the
effects of delay-coupling on the properties of pulse solu-
tions such as their propagation speed as well as pulse shape.
Propagation of pulses is an important aspect of pattern-
forming systems, which is for our system inherited from
the standard diffusively coupled equations and preserved
for small delays. As the delay time is increased, propa-
gating pulses undergo a transition in their spatial shape.
Finally, in the case of large delay times, a transition to a
stationary and spatially coherent regime occurs.

Here we first give a derivation of the special delay cou-
pling term, which extends the motivation we have been
given earlier [4]. Then we describe our findings on exis-
tence and stability of simple space-filling solutions and the
complex pulse solutions in 1D that exist in a certain range
of the parameter space. We finally present recent simula-

tions of one-dimensional arrays where the delay times are
randomly distributed.

2. Derivation of model equations with time-delayed
coupling

Coupling to neighbors with delay has frequently been
studied in models for collective neural activity. In neu-
rons, delay results from different processes, such as synap-
tic delay or transmission delay. Delay was studied in the
frame-work of continuous neural fields, where it results
in the interaction function in a distance-dependent manner
[2]. The effects of delay have also frequently been incorpo-
rated into integrate-and-fire networks [6, 7]. It is much less
studied, however, which effects delay-coupling enforces in
networks of excitable elements.

Coupling with delay can be mathematically derived for
integro-differential equations, which occur for instance in
models for neural waves [8]. We may start using a simple
neural field model,

ov(x, t) B
o1 = J(x, 1))

+L JOy—x) [v(y,t——'x;ﬂ)—l}dy

where v(x, t) denotes the firing rate of the cells. J(x) is an
even interconnection function of neurons and is assumed to
have a strongly localized maximum at x = 0 and to vanish
for x — + co. The term v(y, t— @) —1 mediates the impact
of deviations from the standard firing rate v = 1 on neigh-
boring neurons. Since a signal travels along the output link,
i.e. the axon, with finite velocity u, the signal arrives after
time delay |x — y|/u. In one dimension and after a variable
substitution, we have

ov(x,t)
o = f(x0)

+f+oo J(2) [v(x—z,t—%')—l]dz.

Next, we discretize v(x, f) and the integral by considering
that neurons are placed at distances Ax from each other,

) B '
o = fi(®)

+Z AxJ(jAx) [vi_j(t—jATX)—l},
J
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where v;(?) is the value of v(x, ) at position iAx. Since J(x)
is assumed to be strongly localized, we neglect all input
neurons except for the nearest ones to obtain
vi = fO)+AxJO)(vi()-1)

+AxJ(Ax)(vii1(t — Ax/u) — 1)
+AxJ(Ax)(vi_1 (t — Ax/u) — 1)

= f(v)—AxJ(0) —2c + 2c + AxJ(0)v;(1)

+e(i1(t = 7) + Vi1 (t = 1) = 2v,(0)),

where 7 = Ax/u characterizes the time delay and the last
terms could be seen as resembling a diffusive coupling of
strength ¢ = AxJ(Ax). The last equation has been cast in a
form clearly distinguishing the local firing dynamics from
the interaction, which is diffusive in the case of T = 0.

Here we explicitly consider networks of FitzHugh-
Nagumo (FHN) elements that are coupled to neighbors by
delay-diffusive terms in the manner just described. The
model consists of a system of N FHN elements that are
coupled with time delay in the activator variable. If one
considers periodic boundary conditions, the system may be
thought as an infinite chain or a ring of FHN elements. The
set of equations is

% = v(l-vw)i—a)—wi—wy+C, M
% e(vi —yw;). @

Here, v; and w; denote the activator and inhibitor variable,
respectively, of element i, where i = 1,...,N. In view of the
motivation given above, v; represents the firing function
with self-activating local dynamics, while w; is a further
quantity representing inhibiting physiological processes.

C denotes the coupling and is given by

C; = cMax(0,vi_1(t—1)—vi(1) 3)

+c Max(0, viy1(t — 1) — vi(2)).

At i = 1, N we employ periodic conditions, such that ele-
ment 1 is coupled to element N. In difference to the kind of
systems that were discussed in the previous paragraphs, we
have added a maximum function in the coupling term. The
purpose of the maximum value function is to ensure not to
have a negative value for the coupling. It thus acts simi-
lar to a diode, allowing only stimulating or excitatory sig-
nals on neighbors. An exclusively excitatory coupling may
be expected for neurons, which are frequently assumed to
enter an excited state upon passing a voltage threshold by
input from connected neurons.

Eq. (3) is a non-differentiable right-hand-side of differ-
ential equations (1). In the language of dynamical systems,
the equations are non-smooth yet continuous [9]. In the
non-smooth case, special care has to be taken when study-
ing the equations’ dynamics, particularly the stability and
bifurcations of fixed-points. However, conditions for local
bifurcations based on eigenvalues can be generalized in a

straight-forward way. Indeed, we found that instabilities of
fixed points are not relevant for the dynamics we observe
in simulations. Instead we analyze bifurcations of periodic
orbits, where standard bifurcation theory can be extended
to non-smooth continuous systems.

The small € parameter (here chosen at € = 0.01) enforces
that the inhibitor variables w; functions on a much slower
timescale than the activator variables v;. Our choice of the
two parameters a = 0.1 and wy = —0.1 puts the system on
the edge of excitability, i.e., the system possesses a stable
fixed point where all elements reside at (v*, w*), but suffi-
ciently large perturbations away from this fixed point will
lead to a large excursion in phase space.

3. Linear stability and bifurcation analysis

The bifurcation scenario for simple solutions of two cou-
pled elements will be discussed first. For our set of parame-
ters, we did not find any numerical evidence of a coupling-
induced instability of the trivial state, ie., the fixed-point
solution v; = v,, w; = w,. However, in our direct nu-
merical simulations we have found that periodic solutions,
characterized by a phase shift of half of their period be-
tween adjacent elements, are a very robust appearance[5].

To elucidate the origin of periodic, anti-phase solutions,
their branching behavior is of interest. Because of the spa-
tial periodicity of anti-phase solutions, they can be consid-
ered as stable, temporal oscillations of two coupled ele-
ments. The equations we studied are those in Eqs. (1,2)
with N = 2. We used the branch-continuation software
DDE-BIFTOOL [10] to determine the range of existence
and stability of the periodic anti-phase orbit.

As suggested by our numerical simulations, we found
a family of stabilized non-trivial solutions with the char-
acteristic feature of anti-phase oscillation [5]. A branch
of periodic orbits was then followed in 7 for fixed ¢ and
turned out to be connected with a branch of periodic orbits
of smaller amplitude. Both branches collide in saddle-node
bifurcation at small 7, such that a threshold in delay times
7 exists, below which no periodic orbit occurs. For smaller
¢ we also found further saddle-node bifurcation of the pe-
riodic orbits. Islands of periodic solutions exist at small
coupling strength. If ¢ is increased, the island at 7 = 40 is
connected to the solutions at 7 = 70. Similarly, further nu-
merical analysis showed that at larger 7 additional islands
exists (if ¢ is small).

The two branches produced in a saddle-node bifurca-
tion generally have different stability properties. We found
that the lower branch is always unstable, while the upper
branch looses stability by a pitchfork bifurcation. These
result can be summarized to the bifurcation diagram shown
in Fig. 1. Stable periodic solutions only exists above and
to the right of the solid curve. Particularly, for ¢ = 0.3 we
obtain a minimal 7 for the existence of periodic solutions of
around 17, consistent with the onset of stationary antiphase
oscillations shown in Section 4. For comparison we have
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Figure 1: Location of saddle-node bifurcation (filled cir-
cles) and pitchfork bifurcation (open circles) of antiphase
oscillations in parameter space. Stable periodic orbits exist
to the right and above the solid lines. Crosses show the lo-
cation of parameters for simulations shown in Fig. 2 A,B,
and C (from bottom to top).

added crosses in Fig. 1 to represent the simulations shown
in Fig. 2.

The islands are limited by saddle-node bifurcations
(filled circles) and lead to the folds on the left boundary
in Fig. 1. Areas between the solid and dashed lines con-
tain unstable periodic orbits, which become stabilized by
pitchfork bifurcations (open circles). Note that in the en-
tire parameter space the fixed point is also stable leading to
bistability of fixed point and periodic solution.

4. Simulations of 1D arrays of excitable elements

We now examine solutions using direct numerical sim-
ulation in a one-dimensional array of N = 100 excitable
elements. Typical space-time plots are shown in Fig. 2. In
the following we hold the parameter c fixed at 0.3 and vary
the delay time 7. Like in many other locally excitable sys-
tem, diffusive coupling leads to the existence of uniformly
translating solutions for small delay times [11]. The local-
ized perturbation propagates along the spatial coordinate
and acquires a fixed shape with a certain spatial extension.
A typical pulse-like solution is shown in Fig. 2A.

For large time delay anti-phase oscillations appear,
which form a checker pattern in a space-time plot (Fig. 2C).
Because of their spatial periodicity, these solutions corre-
spond to the anti-phase oscillations described in the previ-
ous section.

In a further regime with intermediate delay times we
found antiphase oscillations with defects frozen into the
pattern (echo waves, Fig. 2B). This regime was described in
[5] to bridge the simple pulse solutions for small T with the
sustained anti-phase oscillations found for larger . The de-
fects resemble the echo waves described in [5] where echo-
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Figure 2: Space-time plots of the v-component, from top to
bottom: standard pulse 7 = 10 (A), echo pulses 7 = 19 (B),
antiphase oscillations 7 = 30 (C, for all runs ¢ = 0.3)

ing from the neighboring elements makes the element spike
again with diminished amplitude after a normal excitation.

It is interesting to note that these echo states can be stabi-
lized at fixed positions in the domain. Here the echo waves
are periodically generated and annihilated in a localized
manner. In contrast, in our earlier simulations in [5] we
had added noise and found that the defects are unlocked
from their fixed position.

5. Simulations with distributed delays

We finally present simulations for 1D lattices where the
delay times have been chosen from a random distribution,
ie., we now employ a coupling term

C; = cMax(0,vi1(t—1;) —vi(D)

+c Max(0, viy 1 (f = 1) — vi(2)). 4)
The delay times 77 have been chosen from a Poisson dis-

tribution with mean 7 and kept fixed throughout the simu-
lation run.
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Figure 3: Simulations with delay times 7 at each link cho-
sen from a distribution with mean 7 = 10, 19, 30 (A,B, and
C, resp.). It can be seen that echo pulses can be meandering
through the domain for 7 = 19 (B), while for larger delay
time they are frozen into the pattern (C).

Fig. 3 shows three exemplary simulation for the same 7
values as in Fig. 2. For small 7 the pulse solutions are very
similar to the case of fixed delay time (Fig. 3A). The main
difference to the case of fixed delay time is the generation
of irregular pulse dynamics in the case of intermediate 7.
While for fixed 7 defects are frozen into the background
pattern of antiphase oscillations (Fig. 2B) , we here find
that the pulses can be compelled to move towards both di-
rections and as well that two pulses in opposite directions
can annihilate. The pattern shares some qualitative features
with those for a forced complex Ginzburg-Landau equation
[12].

Finally for large delay time antiphase oscillations with
defect solutions appear (Fig. 3C). These patterns again re-
semble the patterns for smaller fixed 7 (Fig. 2B) but with
fluctuating appearance of the defects.

6. Summary

Our analysis of delay-coupled excitable dynamics has
revealed a rich repertoire of spatio-temporal patterns. The
simplest solutions, antiphase oscillations of the entire do-
main, can be studied by bifurcation analysis. While those
solutions exist for large delay time, we found an interesting
regime of echo waves for intermediate delay times. Echo
waves are characterized by a second time scale, which is
much longer than the original time scale of the excitable
system and is not present in standard diffusively coupled
systems. Recently we have analyzed arrays with randomly
distributed delay times. The delay times were chosen in
the beginning of each simulation according to a Poisson
distribution. We found that the quenched noise generates
an irregular spatio-temporal dynamics of echo waves.
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