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Abstract—On town streets, we see a truck which dis-
plays advertisement of new products or local events on its
side. The truck is moving media of advertisement to appeal
to walkers on streets and called “AD-truck”. The advertise-
ment effects of the AD-track are generated at the intersec-
tions. Under the traffic rules: cars keep to the left and going
straight is given priority over turning right, turning right
takes a longer time than going straight at the intersections.
Thus, the AD-trucks are recommended to turn right at the
intersections as possible as many times for greater adver-
tisement effect. In this paper, to determine an optimum tour
of the AD-trucks, we define a new discrete optimization
problem called “AD-Truck Routing Problem.” We formu-
late it as integer programming, and propose a local search
method and a chaotic search method which drives the local
search method by using chaotic dynamics.

1. Introduction
Advertisement is one of inevitable activities in modern

business. It needs some medium to send promoting mes-
sages to targeted people. An advertising truck (AD-truck)
which runs around town streets with displaying a new prod-
uct and local event is one of such media. Some type of
AD-truck makes a round trip at the predetermined street,
and the other type runs over the whole streets network. In
this paper, we focus on the latter case.

The AD-truck starts from an base point (depot), runs
around a downtown, and returns to the depot. The aim
of the AD-truck is to promote the new products or local
events displaying on its side for walkers on streets. When
the AD-truck runs around the downtown, advertisement ef-
fects of the AD-truck are generated at the intersections, and
influenced by the magnitude of crowds and elapsed times
at the intersections. Under the traffic rules: cars keep to the
left and going straight is given priority over turning right,
it takes much longer time to turn right than to go straight at
the intersection. By staying a long time in the intersections,
the AD-trucks try to attract attention to the advertisements
on its side. Hence, the AD-trucks are recommended to turn
right at the crowded intersections as possible as many times
for greater advertisement effects. In this paper, to deter-
mine an optimal tour of the AD-truck, we propose a new
discrete optimization problem which is called “AD-Truck
Routing Problem (ADT-RP).” In this paper, we first present
the ADT-RP as a 0-1 linear programming problem, then,
we propose two solution methods for it. The first one is

a local search method for the ADT-RP. However, in gen-
eral, the local search methods cannot obtain a global opti-
mal solution due to the local minimum problem. To resolve
the local minimum problem, we have already proposed ef-
fective heuristic search methods by using chaotic dynamics
[1–9]. Thus, we propose a chaotic search method for solv-
ing the ADT-RP. In the method, the proposed local search
method is driven by the chaotic dynamics. As the results,
the method finds good feasible solutions for wide range of
instances very quickly.

2. AD-Truck Routing Problem
The ADT-RP is assumed that an AD-truck runs over a

grid streets network N consisted of m × n intersections
(Fig.1(a)). A depot (base point of AD-truck) is located
at (0th row, sth column). Each intersection, except for
boundaries, has 4 entry points (from left, top, right, and
bottom), 4 exit points (to left, top, right and bottom) and 12
edges from each entry point to 3 corresponding exit points
(Fig.1(b)). The network also includes 2m(n − 1) horizontal
and 2n(m − 1) vertical street segments which link adjacent
intersections from an exit point to an entry point. Further-
more, 2 vertical edges from/to the depot to/from the inter-
section (0, s) are added. An AD-truck starts from the depot,
runs over the network and returns to the depot within given
time limit T , where the required time for passing through
each of the edges is positive and known. The “U-turn” is
prohibited. We also assume that the AD-truck can enter the
same crossing at most four times from different directions.

The AD-truck obtains the advertisement effects only at
the intersections. The values of effects are decided by av-
erage magnitude of crowds and average waiting time in the
intersections. The values of effects are known and given
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Figure 1: (a) An example of the network N whose size is
(m, n) = (3, 4). (b) An intersection in the network N .
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for all edges in the intersections. The values of edges cor-
responding to turning right are the largest in all edges. Sec-
ond is turning left and the least effects are going straight.
The values of effects are set to 0 for all edges between inter-
sections. The aim of the ADT-RP is to determine the tour
of AD-truck so that it generates the maximum expected ad-
vertisement effect under the condition that time length of
the tour does not exceed the time limit T .

3. Formulation of the ADT-RP
The grid network N is given by (V, E, g, c). V = {0} ∪

V1∪V2 is the set of all points, where “0” denotes the depot,
V1 the set of all entry points, and V2 the set of all exit points
in the intersections. E = E0∪E1∪E2 is the set of all edges,
where E0 is the set of 2 edges between “0” (depot) and the
intersection (1, s), E1 the set of all edges in the intersec-
tions, and E2 the set of all edges between intersections. ge

represents the expected effect of advertisement on edge e
(e ∈ E1) and ce is the required time to pass through the
edge e (e ∈ E). Let yv denote whether the AD-truck visits
point v (yv = 1) or not (yv = 0), and xe denote whether it
moves on edge e (xe = 1) or not (xe = 0). Decision vari-
ables yv and xe determine a tour. Let fe denote the counting
value which AD-truck holds when it moves on edge e. If
it does not move on e, fe is set to 0. The value of fe is
counted up by 1 whenever the AD-truck visits a point. De-
cision variables fe are used to eliminate sub-tours. Using
these notations, the ADT-RP is formulated as follows:
(ADT-RP)

max.
∑
e∈E1

gexe (1)

s.t.
∑
e∈E

cexe ≤ T (2)

xε−(v) = yv, (∀v ∈ V1) (3)∑
e∈δ+(v)

xe = yv, (∀v ∈ V1) (4)

xε+(v) = yv, (∀v ∈ V2) (5)∑
e∈δ−(v)

xe = yv, (∀v ∈ V2) (6)

fe ≤ Qxe, (∀e ∈ E) (7)∑
e∈δ+(v)

fe − fε−(v) = yv, (∀v ∈ V1) (8)∑
j∈V, j,1

f1 j = 0 (9)

fε+(v) −
∑

e∈δ−(v)

fe = yv, (∀v ∈ V2) (10)

y0 = 1 (11)
xε+(0) = 1 (12)
xε−(0) = 1 (13)
yv ∈ {0, 1}, (∀v ∈ V) (14)
xe ∈ {0, 1}, (∀e ∈ {0}E) (15)
fe ≥ 0 : integer, (∀e ∈ E) (16)

where, ε−(v) and ε+(v) represent the unique edge entering
to v (v ∈ {0} ∪ V1) and the unique edge exiting from v

(v ∈ {0} ∪ V2), respectively. δ+(v) represents the set of all
edges going from an entry point v (∈ V1) to 3 exit points
(∈ V2) in the same intersection. δ−(v) represents the set of
all edges going to an exit point v (∈ V2) from 3 entry points
(∈ V1) in the same intersection.

4. Proposed Methods

4.1. Local Search Method
The proposed method solves the ADT-RP by using a new

networkN ′. In the network, traffic patterns of the intersec-
tions are restricted. The traffic patterns are constructed to
satisfy the following conditions: each entry point is con-
nected only one exit point and each exit point is connected
only one enter point. Then, nine and two traffic patterns
are constructed for the cross road and the T-junction, re-
spectively. Figure 2 shows the traffic patterns of the cross
road and the T-junctions.

By assigning a restricted traffic pattern to each inter-
section, a network N ′ is constructed (Fig.3(a)). The net-
work gives one or more disjoint closed paths (sub-tours)
(Fig.3(b)), then, a depot is included in only one sub-tour.
Namely, one feasible tour and the advertisement effect of
the tour can be obtained from the network, if the tour sat-
isfies time limit T . If a traffic pattern at an intersection
in the current network is changed, a new network is con-
structed. As the result, different tour and the advertisement
effect are obtained form the new network. In the proposed
local search method, one traffic pattern at a intersection is
changed to improve the current advertisement effect, until
no furthermore improvement can be obtained.

(a) Cross road

(b) T-junction

(c) Corner
Figure 2: Traffic patterns of intersections in the network N ′.

(a) (b)

Figure 3: An example of (a) the network N ′ and (b) three
sub-tours in the network N ′. The red sub-tour shows the
feasible solution obtained from the network.
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4.2. Chaotic Search Method for the ADT-RP
In general, the local search methods cannot find an opti-

mal solution due to the local minimum problem. To resolve
the problem, we have already proposed effective heuristic
methods by using chaotic dynamics [1–9]. The methods
show good results for different type of combinatorial op-
timization problems such as traveling salesman problems
[1–4], quadratic assignment problems [5], and motif ex-
traction problems [6–9]. Thus, we propose a new chaotic
search method for solving the ADT-RP.

In the chaotic search methods [1–9], a chaotic dynam-
ics is used to avoid local minima. To realize the chaotic
dynamics, a chaotic neural network model constructed by
chaotic neurons [10] is used. To realize a chaotic search
method for the ADT-RP, the chaotic neurons are assigned
to each traffic pattern in all intersections. For the cross
roads, nine chaotic neurons are assigned because the num-
ber of the traffic patterns at the cross road is nine (Fig.3).

If the i jkth chaotic neuron fires, the kth traffic pattern
becomes a new traffic pattern at the intersection (i, j). The
firing of the i jkth neuron xi jk(t) is defined by

xi jk(t) = f (yi jk(t)), (17)

where f (y) = 1/(1 + exp(−y/ε)). yi jk(t) is the internal state

of the i jkth chaotic neuron at time t. If xi jk(t) >
1
2

, the i jkth
neuron fires at the time t, otherwise, the neuron is resting.
yi jk(t) is decomposed into two parts, ζi jk(t) and ξi jk(t). Each
component represents different factor to the dynamics of
chaotic neurons, a gain effect and a refractory effect, re-
spectively.

The gain effect is expressed as:

ξi jk(t + 1) =
{

Gi jk(t) − Ĝ (Ti jk ≤ T ),
−Gi jk(t) (otherwise) (18)

where Ĝ is the expected advertisement effect of a current
tour; Gi jk(t) is the expected advertisement effect of a new
tour, when the kth traffic pattern is assigned to the inter-
section (i, j); Ti jk(t) is the tour time of the new tour; and
β(t + 1) is a scaling parameter. The scaling parameter in-
crease in proportion to time t: β(t + 1) = β(t)+ λ. If we use
these functions, the searching space is gradually limited as
the simulated annealing [11]. If the β(t) takes a small value,
the proposed method can explore a large solution space.
On the other hand, if β(t) takes a large value, the proposed
method works like a greedy algorithm.

The second factor is a refractory effect which works to
avoid the local minima. In the chaotic search, past firings
are memorized as previous states to decide strength of the
refractory effect. The strength of the refractory effect in-
creases just after corresponding neuron firings and recovers
exponentially with time. The chaotic search might permit
to select the same solutions if a corresponding neuron fires
due to a larger gain than the refractory effect or an expo-
nential decay of the refractory effect. The refractory effect
is expressed as:

ζi jk(t + 1) = −α
t∑

d=0

kd
r xi jk(t − d) + θ (19)

= krζi jk(t) − αxi jk(t) + θ(1 − kr), (20)

where α controls the strength of the refractory effect after
the firing (α > 0); kr is a decay parameter of the refractory
effect (0 < kr < 1); θ is a threshold value.

The algorithm of the proposed method can be described
as follows:

1. Given a data set (V, E, g, t): V is the set of all points;
E is the set of all edges; ge represents the expected
advertisement effect on edge e (e ∈ E1), and ce the
required time for passing through the edge e (e ∈ E).
The time limit is T .

2. To make a network N ′, traffic patterns are randomly
assigned to each intersection, then, an initial solution
(tour) and its advertisement effect are obtained from
the network.

3. To change the traffic pattern at intersections, a inter-
section (i, j) is selected randomly.

(a) The kth neuron is randomly selected from the in-
tersection (i, j). If the i jkth neuron fires (xi jk ≥
0.5), the corresponding traffic pattern becomes a
new pattern at the intersection (i, j), and the value
of Ĝ is updated.

(b) Repeat step 3(a) for all neurons of the intersec-
tion (i, j).

4. Repeat step 3 for all intersections.
5. The procedure of a single iteration in the proposed

method is finished. Repeat steps 3-4 until the num-
ber of iterations is satisfied.

5. Simulations and Results
To investigate solving performances of the proposed

methods, first, we obtained an optimization solution of
many instances by using a general purpose mixed integer
program solver. In the simulation, we used a Gurobi 5.0.0
solver [12] on iMac (2.8 GHz Intel Core i7) with 6GB
memory running Mac OS X 10.7.4. All simulations are
carried out a single thread. The size of instances is set to
m = 5 and n = 5, 6, 7, 8, 9. The effects of advertisement
and the required time for passing through the edges are set
to uniform random numbers. The maximum and minimum
values of the uniform random numbers are shown in Table
1. The time limit T is set to∞.

Table 1: The minimum and maximum values of the transit
time ce and the advertisement effects ge.

segments left straight right

ce min 5 1 5 10
max 20 10 15 20

ge min 0 25 5 50
max 0 150 10 500
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Figure 4 shows the calculation time of the Gurobi until
optimal solutions are found. From the results in Fig. 4, the
instances whose size (m × n) is less than 45 can be solved
by general purpose MIP solver through (ADT-RP) formu-
lation in section 3. However, optimal solutions cannot be
obtained in a reasonable time frame for large size of in-
stances (n ≥ 10). These results indicate that it is difficult
to solve by general purpose MIP solver for large size of
instances because the calculation time increases exponen-
tially with the size of network.

To evaluate the performances of the chaotic search
method, we solved same instances. In this simulation, we
set same values of parameters in Eqs.(18) and (19) for all
instance: β(0) = 0.0, λ = 0.000001, and ε = 0.01. The
α and kr are set to various values. In this experiment, we
have applied 5, 000 iteration for each calculation.

The results in Table 2 are shown by percentage of gaps
between obtained solutions by the proposed local search
method and the optimal solutions. From Table 2, the aver-
age gaps of the local search method are about 10.0% for all
instances. In addition, in 30 trials, the local search method
cannot find optimal solutions.

Figure 5 shows the average gaps between the obtained
best solutions of the chaotic search method and the opti-
mal solutions. Table 3 shows the CPU-time of the chaotic
search method. From these results, the chaotic search
method finds good solutions in less CPU-time, when we
appropriately set to the values of parameters. These results
indicate that to search solution space effectively, it is nec-
essary to control the strength of the refractory effect. How-
ever, the good parameters sets are relatively large (Fig.5).
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Figure 4: Calculation time of the Gurobi [12].

Table 2: Performances of the local search method. The av-
erage gaps (%) between obtained solutions and the optimal
solutions (%) in 30 trials are shown.

n 5 6 7 8 9

Average gaps 10.02 9.37 10.09 10.38 10.15

Table 3: CPU-time of the chaotic search method [sec].
n 5 6 7 8 9

CPU-time 26.72 47.55 81.11 118.92 168.48
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Figure 5: Performances of the chaotic search method. The
average gaps (%) between obtained solutions and the opti-
mal solutions in 30 trials are indicated by shading.

6. Conclusions

In this paper, we defined a new discrete optimization
problem called “Ad-Truck Routing Problem (ADT-RP)” to
decide effective tours of the AD-truck. Then, we proposed
a local search method and a chaotic search method for solv-
ing the ADT-RP. From the computational results, we con-
firmed that although the proposed local search method is
simple, the chaotic search method which drives the pro-
posed local search method by the chaotic dynamics obtains
good solutions in less CPU-time. Although we have to
set optimal parameters to find the good solutions by the
chaotic search method, the good parameters sets are rela-
tively large.
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