
IEICE Proceeding Series 
 
 
 
 
New Bollinger bands for Nonlinear Technical Analysis of Pairs Trading 

 
 
Taiga Hayashi, Tomoya Suzuki 

 
 
Vol. 1 pp. 531-534 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



New Bollinger bands for Nonlinear Technical Analysis of Pairs Trading

Taiga Hayashi and Tomoya Suzuki

Graduate School of Science and Engineering, Ibaraki University
4-12-1 Nakanarusawa-cho, Hitachi-shi, Ibaraki, 316-8511, Japan.
Email: 12nm926a@hcs.ibaraki.ac.jp, tsuzuki@mx.ibaraki.ac.jp

Abstract—The Bollinger bands are well known as one
of the technical measures for pairs trading, and are used for
detecting excessive price difference between two stocks.
These bands mean the probability distribution of a price
difference, but actually they have been estimated by simply
aggregating historical price differences. In this study, to
improve the estimation accuracy of the distribution, we ap-
ply the Bagging algorithm based on a nonlinear prediction
following local spatial dynamics. Through some invest-
ment simulations using real stock prices, we demonstrate
that our proposed method is more useful than the conven-
tional Bollinger bands.

1. Introduction

Financial investment is sometimes considered as gam-
bling, but it is an important way of asset management. The
degree of its risk depends on the strategy of investment.
As a strategy whose risk is very low, arbitrage investment
strategy is popular, which utilizes a gap from a balanced
market price. For example, there is the pairs trading that
uses price difference between two stocks, and can make
profits in both situations of an uptrend (bull market) and a
downtrend (bear market). As the strategy, we make a trade
when a price difference between two stocks, two exchange
prices, etc. is unusually expanded. If this price difference
is truly unusual, it will shrink soon due to the efficiency
of market equilibrium. Therefore, by closing the trade at
that time, we can get profit based on the movement of the
price difference. In the pairs trading, it is most important to
identify whether a price difference is unusual or not. On the
other hand, if the price difference expands more, we make
a loss. This judgment depends on each trader.

According to the probability theory, unusual phenomena
are located at the tail of a distribution. In the normal distri-
bution, 66% is included fromm− σ to m+ σ wherem is
the mean value andσ is the standard deviation. And, 95%
is included fromm− 2σ to m+ 2σ. Therefore, because
the phenomena out ofm± 2σ are at most 5%, we can con-
sider that these are unusual phenomena. Thus, the identifi-
cation of unusual phenomena depends on the estimation of
the distribution of price differences. As a technical analy-
sis [1] based on this idea, the Bollinger bands [2] is popular,
which estimates the distribution by using the latest histori-
cal price differences. However, if financial markets are dy-
namical systems, it would be better to utilize not only tem-

Figure 1: Diagram of the Bollinger bands (colored black)
based on time series datax(t) (colored blue). Here,m(t)
means the moving average of the latest historical data of
x(t), andσ(t) means the standard deviation of them. Ifx(t)
comes out of each band, thisx(t) is considered unusual.

poral information but also spatial information included in
all of the historical data. For this reason, we transrate one-
dimensional historical data to a multi-dimensional attractor
to reproduce its dynamics. Then, according to Ref. [3], it
is possible to estimate the future distribution, that is,mand
σ by the Bagging prediction [4] based on the local approx-
imation method [5]. This prediction model is categorized
as a nonlinear prediction using the local spatial attractor.
In our study, by applying this Bagging prediction, we aim
to improve the previous Bollinger bands and propose new
technical measures based on the nonlinear theory. To con-
firm the validity of our nonlinear technical measures, we
perform pairs trading with real data.

2. The Bollinger bands

In pairs trading, excessive price differences are detected
by the Bollinger bands based on the mean valuem(t) and
the standard deviationσ(t) of the historical price differ-
ences. Here, we denote the time series of thei-th price
aspi(t) and that of thej-th prices asp j(t). Then, the price
difference between these two kinds of time series data is

x(t) = pi(t) − p j(t). (1)

Although the probability distribution ofx(t) is unknown,
the Bollinger bands suppose to be able to estimate it by the
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latest historical data. Namely, its mean valuem(t) and its
standard deviationσ(t) are estimated by

m(t) =
1
n

n−1∑
a=0

x(t − a), (2)

σ(t) =

√√√
1
n

n−1∑
a=0

(x(t − a) −m(t))2, (3)

wheren is the length of the latest historical data and is a
free parameter. Ifx(t) is a normal value,m(t) − 2σ(t) ≤
x(t) ≤ m(t) + 2σ(t) is usually satisfied. However, ifx(t) ≥
m(t)+2σ(t), this price differencex(t) is considered unusual
and it would be smaller soon.

This judgment depends on the length of the latest his-
torical datan. In our study, the parametern is fit by a test
simulation so as to maximize the profit of the learning data.
First, we make a trade ifx(t) is more thanm(t) + 2σ(t)
becausex(t) can be considered unusual. Here, we denote
this time ast∗. After a while, if price difference becomes
smaller like x(t) ≤ x(t∗ − 1) wheret > t∗, we close the
trade. This process is repeated with the learning data and
calculate each profit according ton. Then, we decide the
optimumn that can maximize the profit and apply it for the
investment simulation in Sec.4.

3. Nonlinear technical analysis

There are many measures for the technical analysis [1]
of stock markets, foreign exchange markets, etc., and they
are mainly used to estimate the strength of a trend or the
timing of a trend reversal only by using the latest historical
data. However, if financial markets are dynamical systems,
its temporal dynamics leads similar inputs to similar out-
puts; namely, similar future is created by similar past. In
this sense, to estimate future, it would be better to use all
of the similar historical data, not limiting the latest data.
Moreover, the similarity of time series data is not temporal
information but spatial information, especially if we use the
embedding theorem [6] for nonlinear dynamical systems.

For the embedding, we changex(t) into an attractorv(t)
in a multidimensional state space. If the data has dynamics
like v(t) = f [v(t − 1)], the neighborhoods ofv(t − 1) usu-
ally move to those ofv(t). Here, ifv(t) goes away from its
neighborhoods, it is considered unusual.

However, as a weak point of this idea, because local
neighborhoods are a small number of data, these would
not be enough to compose the probability distribution for
the Bollinger bands. To solve the problem, the bootstrap
aggregating (bagging) is very useful to estimate the distri-
bution from a small number of data. Especially, it has been
applied for several nonlinear predictions using local neigh-
borhoods [3, 7], and therefore, we also apply the bagging
prediction to improve the Bollinger bands. In the follow-
ing sections 3.1∼ 3.3, we apply the above ideas one by one
in order to examine each advantage of them.

3.1. Multi-dimensional Bollinger bands

In this subsection, we apply only the embedding theo-
rem [6] to make a multi-dimensional time series and use its
spatial structure. First, we reconstruct an attractorv(t):

v(t) = {x(t), x(t − τ), · · · , x(t − (d − 1)τ)}, (4)

whereτmeans a delay time, andd means an embedding di-
mension. Then, we apply the Bollinger bands to the multi-
dimensional time seriesv(t), and estimatem(t) andσ(t) of
the probability distribution ofv(t) as follows:

m(t) =
1
n

n−1∑
a=0

v(t − a), (5)

σ(t) =

√√√
1
n

n−1∑
a=0

∥ v(t − a) − m(t) ∥2, (6)

where∥ · ∥means an euclidean distance. If∥ v(t)−m(t) ∥>
2σ(t), we consider that this price differencev(t) is unusual,
and we buy the lower stock and sell the higher stock at
the prices:pi(t) and p j(t). Then, the way of closing these
position is the same as the original Bollinger bands. We
call this method the “Multi-dimensional Bollinger bands.”

3.2. One-dimensional Bagging bands

In this subsection, we apply only the Bagging predic-
tion [4] to the original Bollinger bands. In the field of en-
semble learning, it is possible to improve learning ability
by aggregating weak learning results. The bagging pre-
diction mentioned above is one of the ensemble learning
methods, and randomly resample new data from the orig-
inal learning data with replacement. Then, a distribution
is generated by aggregating the results estimated with each
learning data set, and it is used as the Bollinger bands to
decide the timing of trades.

To make the bagging predictors, we use a local linear ap-
proximation [5] as a nonlinear prediction model. Here, we
denotex(t) as a predictee, and find out the neighborhoods
of x(t − 1), denoted byx(tk − 1), as learning data from all
of the past historical data. These neighborhoods are spa-
tial information. Then, we obtain a predicted value ˜x(t) by
averaging the one step future ofx(tk − 1):

x̃(t) =
1
K

K∑
k=1

x(tk). (7)

Next, to make the bagging predictors, we randomly resam-
ple new neighborhoodsx(tk′ − 1), k′ = 1 ∼ K, from the
original neighborhoodsx(tk), and then we obtain a bagging
predictor by using Eq.(7) tox(tk′ − 1). By repeating this
procedureB times, we can get an ensemble made by the
bagging predictors ˜xb(t). We regard this ensemble set as
the probability distribution ofx(t) and calculate its mean
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value and its standard deviation:

m(t) =
1
B

B∑
b=1

x̃b(t), (8)

σ(t) =

√√√
1
B

B∑
b=1

(x̃b(t) −m(t))2. (9)

If x(t) goes out ofm(t) ± 2σ(t), we consider that this
price differencex(t) is unusual. Then, the way of making
sell&buy position and closing these position is the same as
the original Bollinger bands. We call this method the “one-
dimensional Bagging bands.”

3.3. Multi-dimensional Bagging Bands

In the final subsection, we apply the multi-dimensional
embedding and the Bagging prediction, simultaneously. If
a financial system has a nonlinear dynamics and it is prop-
erly reconstructed by the embedding, the nonlinear pre-
diction works better than Sec.3.1 not using prediction and
Sec.3.2 not using the embedding. Therefore, we apply the
bagging algorithm to the embedded attractorv(t).

Here, we denotev(t) as a predictee, and find out the
neighborhoods ofv(t − 1), denoted byv(tk − 1), as learning
data from all of the past historical data. Then, we obtain
a predicted valuẽv(t) by averaging the one step future of
v(t − 1):

ṽ(t) =
1
K

K∑
k=1

v(tk). (10)

Next, to make the bagging predictors, we randomly resam-
ple new neighborhoodsv(tk′ − 1), k′ = 1 ∼ K, from the
original neighborhoodsv(tk− 1), and then we obtain a bag-
ging predictor by using Eq.(10) tov(tk′ − 1). By repeating
this procedureB times, we can get an ensemble made by
the bagging predictors̃vb(t), b = 1 ∼ B. We regard this
ensemble set as the probability distribution ofv(t) and cal-
culate its mean value and its standard deviation:

m(t) =
1
B

B∑
b=1

ṽb(t), (11)

σ(t) =

√√√
1
B

B∑
b=1

∥ ṽb(t) − m(t) ∥2. (12)

If ∥ v(t) − m(t) ∥> 2σ(t), we consider that this price dif-
ferencev(t) is unusual. Then, the way of making sell&buy
position and closing these position is the same as the orig-
inal Bollinger bands. We call this method the “multi-
dimensional Bagging bands.”

4. Investment simulation of pairs trading

To confirm the validity of our methods proposed in
Sec.3, we performed the investment simulation of pairs

Table 1: Results of investment simulation. The indexλ
means the growth asset rate, andN means the number
of trades performed by (a) the original Bollinger bands,
(b) the multi-dimensional Bollinger bands, (c) the one-
dimensional Bagging bands, or (b) the multi-dimensional
Bagging bands. Then,⟨·⟩ is the mean value of the 1246
kinds of pairs trading. The bold numbers are the best score
of each category, and the underlined numbers are the sec-
ond score. If we consider trading costs, smallerN is better.

Method ⟨λ⟩ ⟨N⟩ max{λ} min{λ} ⟨λ/N⟩
(a) 8.76 75 28.59 1.25 0.12
(b) 12.40 88 41.09 1.89 0.14
(c) 8.77 40 42.21 0.08 0.25
(d) 10.89 48 42.76 1.38 0.24

trading with real stock data for five years after April 7,
2000. Moreover, we made the following conditions to se-
lect two stocks for each pair. First, the price range of two
stocks should be the almost same because if not, the move-
ment of price differences between them depends on the one
stock whose price range is higher. Next, the price range
of selected stocks should be high enough because stocks
whose price range is too low often have some problems in
business, and such stocks have higher liquidity risk. For
these reasons, we selected stocks whose price range is be-
tween 500 to 1000 yen.

Furthermore, we made a condition about the correlation
between two stocks for each pair. The correlation means
the similarity, and is calculated by

Ri j =

∑T
t=1(pi(t) − p̄i)(p j(t) − p̄ j)√∑T

t=1(pi(t) − p̄i)2
√∑N

t=1(p j(t) − p̄ j)2
. (13)

Here, if this correlation is larger, both movements of two
stocks are more similar, and therefore the range of price
differences is smaller. On the other hand, if this correlation
is smaller, the range of price differences is larger, which
means this pairs trading has a higher risk. For this reason,
we selected each pair of two stocks whose correlation is
more than 0.5.

For investment simulation with real stock prices, we
used the 1246 kinds of pairs satisfied with the above con-
ditions. And then, we calculated the asset growth rateλ
of each pairs trade for five years. Ifλ is larger, it means
that the method to decide trading timings is more effec-
tive. According to Table1, the multi-dimensional Bollinger
bands show larger⟨λ⟩ than the original Bollinger bands.
This means that the embedding method is effective to ap-
ply the spatial structure of time series data for drawing
the Bollinger bands. Then, the one-dimensional Bagging
bands do not show the improvement of⟨λ⟩, and it might be
because the Bagging prediction does not work well without
using the spatial structure made by the embedding method.
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Figure 2: The frequency distribution of the asset growth
rate λ (left) and that per tradeλN (right) by using (a)
the original Bollinger bands, (b) the multi-dimensional
Bollinger bands, (c) the one-dimensional Bagging bands,
or (b) the multi-dimensional Bagging bands. The vertical
axisP is the probability of the 1246 kinds of pairs trading.

However, the number of tradesN is smaller, and so the
performance of each trade

⟨
λ
N

⟩
is better. Finally, we can

see that the multi-dimensional Bagging bands can improve
not only⟨λ⟩ but also

⟨
λ
N

⟩
than the original Bollinger bands

because the Bagging prediction can be applied to the em-
bedded attractor and can use its spatial structure.

To examine the results of Table 1 in more detail, Fig.
2 shows the frequency distribution ofλ and λ

N by each
technical method. For the viewpoint ofλ, we can see the
advantage of the multi-dimensional Bollinger bands, but
this advantage disappears inλN . On the other hand, the
multi-dimensional Bagging bands show better performance
in bothλ and λN .

Figure 4 shows correlations betweenλ0 andλ by each
technical method. Here,λ0 means the asset growth of fit-
ting model parameters to the learning data, andλ means
that of real investment after the learning data. If there is
some correlation betweenλ0 andλ, it means that we can
predict the unknownλ by the knownλ0 when fitting model
parameters, and can select the best two stocks in advance.
As a result, although there are not strong correlations, we
can see slight correlations. It is a future study to apply these
correlations.

5. Conclusions

The Bollinger bands have been used for an arbitrage in-
vestment strategy to detect excessive prices, and are cal-
culated by a moving average and a standard deviation of
the latest historical data. However, such a simple estima-
tion might be insufficient for complex financial systems.
For this reason, we supposed that financial systems have
nonlinear dynamics and applied nonlinear analytical tech-
niques such as the multi-dimensional embedding and the
nonlinear bagging predictors, in order to improve the origi-
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Figure 3: Correlations betweenλ0 andλ by using (a) the
original Bollinger bands, (b) the one-dimensional Bagging
bands, (c) the multi-dimensional Bollinger bands, or (b) the
multi-dimensional Bagging bands. Here,λ0 means the as-
set growth of fitting model parameters to the learning data,
andλmeans that of real investment after the learning data.

nal Bollinger bands by using not only temporal information
but also spatial information of the embedded attractor.

To confirm the validity of our ideas, we performed
some investment simulation of pairs trading with real stock
prices. As a result, investment performance was improved
step by step. Especially, we can realize the most profitable
performance by applying the bagging algorithm to the em-
bedded attractor. We call it the “multi-dimensional bagging
bands.”
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